Delphi Developer’s
Guide to XML

Second Edition

Keith Wood

Cataloging-in-Publication Data

Wood, Keith, 1961-
Delphi Developer's Guide to XML, Second Edition / by Keith Wood.
ISBN 1-59109-862-9 (pbk.)
1. XML (Document markup language). 2. Delphi (Computer file). 3. Computer software—
Development. I. Title

Second Edition © 2003, Keith Wood
First Edition © 2001, Wordware Publishing Inc.
All rights reserved
kbwood@iprimus.com.au
Published by BookSurge

5341 Dorchester Road Suite 16
North Charleston, SC, 29418

No part of this book may be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written
permission from the author.

ISBN 1-59109-862-9
10987654321

Delphi is a registered trademark of Borland Software Corporation in the United States and other countries. Other products
mentioned are used for identification purposes only and may be trademarks of their respective companies.

Contents

COMLEINES..c.uueiiiuiiiiiiiiniirentteit ettt et se st s et e s s satsesasesesasesssatsesastsesasessssssesasesesasassns i
Preface ...ueieeerneeiecrreeeecrrneeecssneeeesssnnesecssnnessesssnsesssssnsesssssnnesssssnnssssssnnsessssanaesssssnnesssssnns il
What is inthe BOOK? ... il
CONVENLIONS ... e e, il
Code DOWNIOAS...........ooooiiiiii e, il
Appendices
APPEIAIX A....ooeeeieerrneeeecrrneeecsssneesesssnsesssssssesssssnsesssssnsesssssanessssssnsesssssnsesssssnnssssssanaesssse 3
CUESoft’s Document Object Model........ccccveererrreerecrsrneeecrssneeecsssneessssnsesscssnnessessaneess 3
TDOMEXception EXCEPLIONocoiiiiiiiiiiii e, 5
TXmlParserError EXCeption..............ccccooiiiiiiiii e, 6
TXMINOAS CLaSS ..o, 6
TXMINOAELISt CLASS ..o e 13
TXmINamedNodeMap CIassccccoiiiiiiiiiiii e 14
TXmIElement Classcc..oooiiiiiiiii e 16
TXMIALEIDULE CLaSS ..ot 20
TXmlCharacterData Class.................oooviiiiiii e 20
TXMITEXE CLaSS. ... e e 21
TXmICDataSection Classcc...oooiiiiiiiiiie e 22
TXMIComMENt Class.........c...ooiiiiiiiiii e 22
TXmlProcessingInstruction Class...............ccc..coooiiiiiiiiiie e 23
TXmIDocumentType Classc...ooooiiiiiiiiii e 23
TXMINOAtION ClASScooiiiiiiiie e e 24
TXMIENGEY CLASS ..o e 25
TXmlEntityReference Class..............oooviiiiiiiiiii e 26
TXmlDocumentFragment CIasscccoooiiiiiiiiii e 26
TXMIDOCUMENE CLASS..........oviiiiiieece e 27
TXmlDomImplementation Class................cc...oooiiiiiiiiee e 30
TXmlObjModel COmMPONENtcccveiiiiiiiiiiii e 30
TXmIParser COMPONCNL............ccc..ooiiiiiiiiiiiiis e 33
Loading the CUESOft DOMoooiiiiii e 37
SUMMATY ... e, 42
APPENAIX Bi.....ooeeiiieeeeieirnetecrnseeiecssnnesecsssnsesesssnnesssssanessesssnsesesssnnessssssnassssssnaasesssanaas 44
Mass Electronic Mail-QuLSccccveereerrrereersseesesssneesscsssnessesssnsesssssnsesssssnnasssssansesssse 44
Loading the Configuration Properties.................ccccoooviiiiioii e 45
Mail Message Templateccocooiiiiiiiii e 47
Database ACCESSoouuiiiiiiiiiiie oo 50
Drop It inthe POSt ... 51
Logging and TeStNGoooiiiiiiiii oo 52
AILTogether NOW ..ot e 54
SUMMATY ... e e, 56
APPENAIX C...coeeeereeeneeiecrnneteesssneesessssnesscsssnsesssssnsesssssanessssssnsasssssnnesssssnssssssnsasssssnnaass 57
A CuStoMIZEd CLIENLcveeeeerrreerecrrreeeecssseesesssssesscsssneasesssnsesssssnnesssssnssssssnsasssssanaass 57
The CLENL..... ..ot e e 57
Information HIidingoooiiiiii e 59
Parsing the XML DOCUMENLScccooiiiiiiiiiii e 60
Constructing Model ObJectS............oooviiiiiiiiiic e, 62

Accumulating Contentoooiiiiiii e, 64

SaVING PrOPETLICSc.vviiiiiii e e e 64
CLient PrOCESSING........ccvviiiiii e e 66
Through the BroWSeTccooiiii e 68
SUMMATY ... e e e 70
INAEX ettt et as e s aas e s saae e 71

Preface

This book is designed as an introduction to XML and an examination of how
XML can be used in conjunction with Delphi.

What is in the Book?

The Appendices include additional material from the first edition of this book.
Firstly there is a discussion of the CUESoft DOM from the CUEXmlI package.
Next follows a customizable mass mail-out program, based around the
Microsoft DOM, that uses XML for its configuration file and for the message
template. Finally there is a customized Windows client program for a
particular class of XML documents, based on SAX for Pascal, with a
description of how to automatically invoke it for appropriate content
downloaded from the Internet.

Conventions

The main text of the book is set in a proportional font (like this), while terms
introduced for the first time appear in ifalics, as do emphasized items. Code
samples, references to Delphi classes and methods, the names of directories
and files, and entered text are presented in a fixed font. The names of
menu items and other UI controls appear in a sans-serif font.

Throughout the book various items are marked so as to bring them to your
attention. The notations used and their meanings are described below:

NOTE
A note is information of probable interest regarding the surrounding text.

TIP
A tip is something to make your development with XML easier.

WARNING
A warning is something that you need to be aware of regarding the preceding
text.

Code Downloads

The code samples used in this book are available on the accompanying Web
site: http://home.iprimus.com.au/kbwood/DelphiXML. Downloads are
arranged by chapter, with the addition of a single package that includes all the
code.

This Web site also provides links to the various specifications for XML
and its related technologies. Links to Delphi resources for XML also appear.

These appendices include chapters from the first edition of this book.

Appendix A covers the CUESoft Document Object Model. Although this
DOM is no longer commercially available, it is still in use, and forms the basis
for TurboPower’s XML Partner suite.

Appendix B presents a program that performs mass electronic mail-outs
by merging database information with a message template and sending these
out using SMTP. XML is used to specify the configuration file as well as the
message template, which allows for the embedding of values from database
fields within the text. The template also includes the actual SQL query used to
obtain the information in the first place. For processing the XML, Microsoft’s
XML parser is used.

Appendix C demonstrates how to process XML documents into a
customized client written in Delphi. The movie-watcher documents are used
as the example, and are shown in a custom GUI with appropriate navigation
links between the sections. A SAX-compliant parser is used to process the
XML, demonstrating an implementation of the IContentHandler interface.
As a bonus you see how to set up your browser to automatically open the
movie-watcher documents in the new client when they are downloaded.

Appendices

L
Appendix A

_.CUESoft’s Document
L*Objett Model

CUESoft has also implemented the DOM specification under Windows, this
time as a set of native Delphi objects. The advantage of having native objects
is that the parser and DOM can be compiled directly into your program, with
no need to worry about mismatched DLLs.

The W3C DOM interfaces are implemented as classes in the CUEXml
Delphi package, with the class hierarchy shown in Figure A-1. CUESoft
follows the DOM Level 1 specification very closely, although they also have
several extensions for increased functionality and usability. They do have
some support for namespaces, but handle only string values, not the expected
WideStrings.

The CUESoft DOM was a commercial product that was acquired by
TurboPower. If you have the source you can compile it into any 32-bit version
of Delphi. Otherwise, there are prepackaged libraries available for Delphi
versions 3 through 5. In general, all you have to do to install the package is as
follows:

1. Unpack the files from CUESoft into an appropriate directory.
2. Select Component | Install Packages... from the Delphi menu.
3. Click the Add button.

4. Change the file type to Package collection (*.dpc), and browse to the
directory where you unpacked the files.

5. Select cuexml2 n.dpc (where 7 is your version of Delphi) and click OK.

6. Click Finish on the package installation dialog and OK on the package
dialog. The two components in the package appear on the CUESoft tab in
the component palette.

Each of the classes is described in further detail below. Differences from the
DOM specification are noted as they are encountered. Unless otherwise noted,
all these classes appear in the Xm10bjModel unit.

Appendices

Figure A-1: The CUESoft DOM class hierarchy.

TObject

Exception

TDomException

TXmlParserError

TPersistent

[

TComponent

TXmIObjModel

TXmlParser

TXmIDomImplementation

TXmINamedNodeMap

TXmINode

TXmlAttribute

TXmlCharacterData

TXmIComment

TXmIText

L TXmICDataSection

TXmIDocument

TXmIDocumentFragment

TXmIDocumentType

TXmIElement

TXmIEntity

TXmIEntityReference

TXmINotation

TXmIProcessinglnstruction

TXmINodeList

Appendix A: CUESoft’s Document Object Model 5

TDOMEXxception Exception

General errors that occur during DOM processing within the CUESoft
package are notified as TDOMExceptions (see Listing A-1). Following the
DOM specification, it adds only a single numeric code to denote which type of

problem arose.

Listing A-1: The TDOMEXception exception.

TDOMException = eclass(Exception)

public

constructor CreateCode (oCode:
EExceptionCode read FCode;

property Code:
end;

EExceptionCode) ;

The properties and methods of a TDOMException object are described below:

constructor CreateCode (oCode:

EExceptionCode) ;

This constructor generates a new exception passing in the type of error
encountered. Typically you would not create these exceptions yourself,
but would react to those raised by the DOM during its processing.

property Code:

EExceptionCode read FCode;

This read-only property indicates what type of problem arose. Its value is
one of those shown in Table A-1. As you can see, these follow the DOM

specification.

Table A-1: CUEXmI error codes.

Error Code
ecNone
eclndexSizeErr

ecWsStringSizeErr
ecHierarchyRequestErr

ecWrongDocumentErr
eclnvalidNameErr

ecNoDataAllowedErr

ecNoMaodificationAllowedErr
ecNotFoundErr

ecNotSupportedErr
eclnuseAttributeErr

eclnvalidParamErr

Meaning
No error

An index or size is negative or greater than
allowed.

The text does not fit into a WideString.

A node is inserted somewhere it does not
belong.

A node from another document is used.

An invalid name is used (usually containing an
illegal character).

Data is specified for a node that does not
support data.

Attempting to modify a read-only node.

The specified node cannot be found in this
context.

The action specified for the object is not
supported under this implementation.

An attribute already belonging to one element
is being added to another.

An invalid parameter is passed to a method.

6 Appendices

TXmIParserError Exception

Errors arising from the parsing of a document are indicated through a
TXmlParserError exception (see Listing A-2). These include further details
about the reason for and position of the error. This class appears in the
XmlParser unit.

NOTE
There is no equivalent of this exception in the W3C DOM specification.

Listing A-2: The TXmlParserError exception.

TXmlParserError = class(Exception)
public
constructor CreateParseError(oFilePos, oLine, olLinePos: Integer;
oUrl, oReason: string);
property Reason: string read FReason;
property Line: Integer read FlLine;
property LinePos: Integer read FLinePos;
property FilePos: Integer read FFilePos;
property Url: string read FUrl;
end;

A TXmlParserError object’s properties and methods are listed below:

constructor CreateParsekrror (oFilePos, olLine, oLinePos:
Integer; oUrl, oReason: string);
Build a new exception during the parse process with this constructor. The
parameters set all the properties for this exception. Generally the parser
itself raises these errors, and you only need to respond to them.

property Reason: string read FReason;
Retrieve a text description of the problem through this read-only
property.

property Line: Integer read FLine;

This read-only property returns the line number in the XML document
where the error was detected.

property LinePos: Integer read FLinePos;
The character position within that line is given by this read-only
property.

property FilePos: Integer read FFilePos;
Find the offset into the XML document as a whole with this read-only
property.

property Url: string read FUrl;

This read-only property returns the source name of the XML document
in error.

TXmINode Class

All nodes within the DOM structure derive from a common class that provides
the basic functionality used by most of them. The Txm1Node class (shown in
Listing A-3) embodies this in the CUESoft package.

Appendix A: CUESoft’s Document Object Model 7

Listing A-3: The TXmINode declaration.

TXmlNode = class
protected
FNodeId: Integer;
FNodeName: string;
ENodeType: Integer;
ENodeValue: string;
function GetNodeStringType: string;
public
constructor Create;
destructor Destroy; override;
property Attributes: TXmlNamedNodeMap read FAttributes;
property BaseName: string read GetBaseName;
property ChildNodes: TXmlNodelList read FChildNodes;
property FirstChild: TXmlNode read GetFirstChild;
property LastChild: TXmlNode read GetLastChild;
property LevelCode: string read GetlevelCode;
property Namespace: string read GetNamespace;
property NextSibling: TXmlNode read GetNextSibling;
property NodeId: Integer read FNodeld write ENodeId;
property NodeName: string read FNodeName write FNodeName;
property NodeStringType: string read GetNodeStringType:;
property NodeType: Integer read FNodeType;
property NodeValue: string read FNodeValue write FNodeValue;
property OwnerDocument: TXmlDocument read GetOwnerDocument;
property ParentNode: TXmlNode read FParentNode;
property Prefix: string read GetPrefix;
property PreviousSibling: TXmlNode read GetPreviousSibling;
property Text: string read GetText;
property XmlDocument: string read GetXmlDocument;
procedure AddRef;
procedure AppendChild(oNewChild: TXmlNode) ;
function CloneNode (bDeep: Boolean = True): TXmlNode;
procedure ForceOwnerDocument (oNode: TXmlNode) ;
function GetChildNodesByNodeType (wI'ype: Integer): TXmlNodeList;
function GetNodesByNodeType (wIType: Integer): TXmlNodelist;
function HasAttributes: Boolean;
function HasChildNodes: Boolean;
procedure InsertBefore(oNewChild, oRefChild: TXmlNode) ;
function IsAfter (oNode: TXmlNode): Boolean;
procedure Release;
procedure RemoveAll;
function RemoveChild(oRefChild: TXmlNode): TXmlNode;
function ReplaceChild(oNewChild, oRefChild: TXmlNode): TXmlNode;
end;

Using functionality from the basic node when it is not applicable results in an
exception being thrown — for example, attempting to add child nodes to a text

node. Simple properties return an empty string or nil if they do not apply to
the current node type.

The properties and methods of a Txm1Node object are detailed below:

constructor Create;
Do not create Txm1lNodes directly. They are only used within the DOM
hierarchy as one of this class” subclasses.

property Attributes: TXmlNamedNodeMap read FAttributes;
Access the attributes of a node with this read-only property. It returns a
named node map containing TXmlAttribute objects. Although it is
defined on all nodes, only element nodes can contain attributes. All other
types return nil.

Appendices

property BaseName: string read GetBaseName;
Retrieve the local part of the node’s name — the part after any namespace
prefix — through this read-only property.

NOTE
In the W3C DOM specification, the local part of the node’s name is given by
the localName attribute.

property ChildNodes: TXmlNodelList read FChildNodes;
Moving down through the document tree uses this read-only property. It
returns a “live” list of ordered nodes, meaning that any changes to the
nodes in the list immediately update the main structure, and vice versa. If
a node has no children, this property still returns a valid list, but that list
has no entries in it.

property FirstChild: TXmlNode read GetFirstChild;
This convenience property returns the first entry in the ChildNodes list
or nil if there are no children.

property LastChild: TXmlNode read GetLastChild;
Similarly, this property returns the last entry in the ChildNodes list, or
nil if none.

property LevelCode: string read GetLevelCode;
This read-only property returns the node’s location within the DOM
hierarchy as a sequence of numbers separated by periods. Each number
represents the position of the node’s ancestors within their parent’s list of
children (although counting here starts at one). For example, 4.1.2 is
the node at the second position in the node at the first position in the
node at the fourth position in the document.

NOTE
The LevelCode property is not part of the W3C DOM specification.

property Namespace: string read GetNamespace;
The namespace descriptor for the node comes from this read-only
property. It is blank if no namespace applies to the node. Namespaces are
declared through “xm1ns” prefixed attributes.

NOTE
In the W3C DOM specification, the namespace for the node is given by the
namespaceURI attribute.

property NextSibling: TXmlNode read GetNextSibling;
Another convenience property, this one retrieves the node after the
current one in its parent’s list of children. Again, a nil is returned if
there is no following node.

property NodeId: Integer read FNodelId write FNodeId;
Use this property to define your own ID for each node, separate from any
that may be defined in the document itself.

Appendix A: CUESoft’s Document Object Model

NOTE

The Node1d property is not part of the W3C DOM specification.

property NodeName:

string read FNodeName write FNodeName;

The name of the node is given by this property. For some nodes this is a
predefined value. See Table A-2 for the meaning of this property based

on the node’s type.

Table A-2: Node name and value by node type.

Node Type
ELEMENT_NODE

ATTRIBUTE_NODE
TEXT_NODE
CDATA_SECTION_NODE

ENTITY_REFERENCE_NODE
ENTITY_NODE

PROCESSING_INSTRUCTION_
NODE

COMMENT_NODE

DOCUMENT_NODE
DOCUMENT_TYPE_NODE
DOCUMENT_FRAGMENT_NODE
NOTATION_NODE

Node Name
Name of element

Name of attribute
“#text”
“#cdata-section”

Name of entity
Name of entity
Target of instruction

“#comment”

“#document”

Name of document type
“#document-fragment”
Name of notation

Node Value

“ (Empty
string)
Attribute value
Content of text

Content of
CDATA
section

Content
excluding
target

Content of
comment

property NodeStringType:

string read GetNodeStringType;

This read-only property retrieves the node’s type as a string value. It
returns the node types from Table A-3 as text.

NOTE

The NodestringType property is an extension to the W3C DOM specification.

property NodeType:

Integer read FNodeType;

This read-only property identifies the type of node represented by this
object, allowing it to be safely cast to that type to access its additional
abilities. The value is one of those shown in Table A-3, alongside the

corresponding subclass.

property NodeValue:
FNodeValue;

string read FNodeValue write

Retrieve or set the text value of the node through this property. Many
node types do not use this property, as shown in Table A-2.

10

Appendices

Table A-3: Node types.

Node Type Implementing Class
ELEMENT_NODE TXmIElement
ATTRIBUTE_NODE TXmlAttribute
TEXT_NODE TXmIText
CDATA_SECTION_NODE TXmICDataSection
ENTITY_REFERENCE_NODE TXmIEntityReference
ENTITY_NODE TXmIEntity
PROCESSING_INSTRUCTION_NODE | TXmIProcessinglnstruction
COMMENT_NODE TXmIComment
DOCUMENT_NODE TXmIDocument
DOCUMENT_TYPE_NODE TXmIDocumentType
DOCUMENT_FRAGMENT_NODE TXmIDocumentFragment
NOTATION_NODE TXmINotation

property OwnerDocument: TXmlDocument read
GetOwnerDocument;

All nodes contain a reference to the document that created them, which is
available through this read-only property. For document nodes this
returns nil.

property ParentNode: TXmlNode read FParentNode;
Once placed into a DOM structure, this read-only property lets you reach
the parent of the node. The parent is nil for attribute, document, and
document fragment nodes, as well as for other nodes that have not yet
been added to the tree.

property Prefix: string read GetPrefix;
This read-only property returns the namespace prefix — the part up to the
colon (:) — from the node’s name, or an empty string if there is no
prefix.

property PreviousSibling: TXmlNode read
GetPreviousSibling;
This property retrieves the node before this one in its parent’s list. nil is
returned if there is no previous node.

property Text: string read GetText;
Retrieve all the text from this node and its descendants concatenated
together via this read-only property.

NOTE
Both the Text and xmlDocument properties are extensions to the W3C DOM
specification.

property XmlDocument: string read GetXmlDocument;
Extract the XML fragment that corresponds to this node and all of its
descendants from this read-only property.

Appendix A: CUESoft’s Document Object Model 11

procedure AddRef;
Add a reference count to this node. Use Release to decrement the
count. This method is automatically called when the node is created, and
again when it is added to the tree.

NOTE
The addref method is not part of the W3C DOM specification.

procedure AppendChild(oNewChild: TXmlNode) ;
Adds the specified node to the end of this node’s list of children. If the
supplied node is already in the structure, it is first removed. Adding a
document fragment node adds all of its children instead.

function CloneNode (bDeep: Boolean = True): TXmlNode;
Create a copy of the node through this method, including any attributes
and their values. Attributes resulting from default values in the DTD are
also duplicated. If the bDeep parameter is False, the process stops
there. If it is True, all the descendants of this node are also cloned under
the copy. The new duplicate has no parent until it is placed back into the
DOM hierarchy.

procedure ForceOwnerDocument (oNode: TXmlNode) ;
Set the OwnerDocument property for the supplied node and all its
descendants to be the same as the current node. This lets you transfer
nodes from one document to another.

NOTE
The ForceOwnerDocument method is not part of the W3C DOM specification,
but is akin to the importNode method.

function GetChildNodesByNodeType (WI'ype: Integer):
TXmlNodelist;

Retrieve a node list containing all the immediate child nodes of a given
type. The types are specified using the values shown in Table A-3.

NOTE

Neither of the GetchildNodesByNodeType O GetNodesByNodeType methods
are part of the W3C DOM specification, although they function somewhat like
a NodelIterator.

function GetNodesByNodeType (WType: Integer):
TXmlNodelist;

Similarly, this method returns a list of all descendants of the specified
type.

function HasAttributes: Boolean;
This method returns True when there are entries in the attributes list and
False when there are none.

function HasChildNodes: Boolean;
A convenience function, this returns True when there are child nodes in
the list and False when it is empty.

12

Appendices

procedure InsertBefore(oNewChild, oRefChild: TXmlNode) ;
Place the new node immediately before the specified reference node
within this node’s list of children. If the reference node is nil, the new
node is placed at the end of the list. A new node already in the tree is first
removed. Inserting a document fragment node adds all of its children
instead.

function IsAfter (oNode: TXmlNode): Boolean;
This function returns True if the current node appears after the given
node in a pre-order traversal of the hierarchy, and False if it does not.
For example, a node is after its parent and any previous sibling, but it is
before any next sibling and any child nodes.

NOTE
The 1sAfter method is not part of the W3C DOM specification.

procedure Release;
Decrement the reference count for this node. When the count reaches
zero, the object is destroyed. Be sure to call this method once you are
finished with the node after adding it to the tree.

NOTE
The rRelease method is not part of the W3C DOM specification.

procedure RemoveAll;
Delete all child nodes from the list and destroy the node objects.

NOTE
The rRemovenll method is not part of the W3C DOM specification.

function RemoveChild (oRefChild: TXmlNode): TXmlNode;
Removes the specified node from this node’s list of children. A reference
to that node is returned. The old node should be released once the
method is finished.

function ReplaceChild(oNewChild, oRefChild: TXmlNode) :
TXmlNode;
Remove the specified reference node and insert the new node in its place.
The function returns a pointer to the node that is removed.

NOTE

Although the CUESoft package does not explicitly support DOM Level 2, it
does include several properties dealing with namespaces. Missing from the
DOM Level 2 specification are the normalize and issupported methods.
normalize does appear in the TxmlElement class in CUESoft's package,
while issupported is duplicated by the HasFeature method of the
TXmlDomImplementation class.

Appendix A: CUESoft’s Document Object Model 13

TXmINodelList Class

The TxXmlNodeList class (see Listing A-4) encapsulates an ordered
collection of nodes. It is the object returned by the ChildNodes property of a
node, as well as by the various GetNode* methods. Items within the list are
accessed sequentially by their position.

Listing A-4: The TXmINodeList declaration.

TXmlNodeList = class

public
constructor Create;
destructor Destroy; override;
property Length: Integer read GetLength;
property XmlDocument: string read GetXmlDocument;
procedure Add(oNode: TXmlNode) ;
procedure Delete(wlndex: Integer);
procedure Empty;
function Exchange (wSrc, wDest: Integer): Boolean;
function IndexOf (oNode: TXmlNode): Integer;
procedure Insert (wlndex: Integer; oNode: TXmlNode);
function Item(wIndex: Integer): TXmlNode;

function Move (wSrc, wDest: Integer): Boolean;

procedure Replace (wlndex: Integer; oNode: TXmlNode);

procedure Sort (sAttribute: string = ''; wOrder: Integer = 0);
end;

The TXm1NodeList object’s properties and methods are shown below:

constructor Create;
Lists are automatically created for you as the result of a query, or through
anode’s ChildNodes property.

property Length: Integer read GetLength;
Find the number of entries in the list through this read-only property.
Access the individual items with indexes in the range zero to Length -
1.

NOTE

All the properties and methods except for Length and Item are extensions to
the DOM Level 2 specification. The specification intentionally left out methods
for manipulating the node list, other than reading items out.

property XmlDocument: string read GetXmlDocument;
This read-only property returns all the items in the list as a formatted
XML fragment. It is not well-formed XML unless there is a single
element type node in the list.

procedure Add(oNode: TXmlNode) ;
Add the given node to the end of the list.

procedure Delete(wIndex: Integer);
Removes the indicated node from the list.

procedure Empty;
Deletes all the nodes from the list.

14 Appendices

function Exchange (wSrc, wDest: Integer): Boolean;
Swaps the positions of two entries in the list, given their locations. A
True value returns if the exchange succeeds, and a False returns
otherwise.

function IndexOf (oNode: TXmlNode): Integer;
Finds the position of the specified node within the list. A -1 value is
returned if the node cannot be found.

procedure Insert (wIndex: Integer; oNode: TXmlNode) ;
Places the specified node at the given position in the list.

function Item(wIndex: Integer): TXmlNode;
Access each entry in the list with this function, giving the item’s position
within the list. If the index value is out of range, the function returns
nil.

function Move (wSrc, wDest: Integer): Boolean;
Moves an item in the list from its source position to its new destination
location. The function returns True if the move succeeds, and False
otherwise.

procedure Replace (wIndex: Integer; oNode: TXmlNode) ;
Removes the item currently at the nominated index and puts the new
node in its place.

procedure Sort (sAttribute: string = ''; wOrder: Integer =

0);
Order the nodes in the list with this method. If an attribute name is
supplied, the nodes sort by the value of that attribute. If the attribute
name is left blank, the nodes appear in order of their text content. Use the
last parameter to sort in ascending (0, the default) or descending (1)
order.

If the node list is the ChildNodes of an element, then sorting
physically reorders the actual nodes within the DOM. For other lists,
only that list is sorted, without affecting the DOM hierarchy.

TXmINamedNodeMap Class

The Txm1NamedNodeMap class (see Listing A-5) also manages a list of nodes,
but provides primary access to them via their names. Although you can also
retrieve items by their position, this is merely a convenience and does not
imply any particular ordering of the nodes.

Listing A-5: The TXmINamedNodeMap declaration.

TXmlNamedNodeMap = class
public
constructor Create;
destructor Destroy; override;
property Length: Integer read GetLength;
procedure Add(oNode: TXmlNode) ;
procedure Delete(wlndex: Integer);
procedure Empty;
function GetNamedItem(sName: string): TXmlNode;
function IndexOf (oNode: TXmlNode): Integer;

Appendix A: CUESoft’s Document Object Model 15

procedure Insert (wlndex: Integer; oNode: TXmlNode);

function Item(wIndex: Integer): TXmlNode;

function RemoveNamedNode (sName: string): TXmlNode;

procedure Replace (wlndex: Integer; oNode: TXmlNode);

function SetNamedItem(oNode: TXmlNode): TXmlNode;
end;

The properties and methods of the TxmlNamedNodeMap object are described
below:

constructor Create;
As for node lists, these node maps are automatically created for you. The
Attributes property of the TXmlNode class and the Entities and
Notations properties of the TXmlDocumentType class all return node
maps containing their respective node types.

property Length: Integer read GetLength;
Return the number of entries in the map through this read-only property.

procedure Add(oNode: TXmlNode) ;
Add the specified node to the list.

NOTE
The Add, Delete, and Empty methods are extensions to the W3C DOM
specification.

procedure Delete(wIndex: Integer);
Remove the node at the given position from the list. An out of range
index is ignored.

procedure Empty;
Remove all the nodes from the list.

function GetNamedItem(sName: string): TXmlNode;
Retrieves the node from the mapping that has the given name. A nil is
returned if no node matches this name. The resulting node can be cast to
its appropriate subclass to access its specific abilities.

function IndexOf (oNode: TXmlNode): Integer;
Return the position of the given node in the list. If the node is not found,
the function returns —1.

NOTE
The Indexof and Insert methods are extensions to the W3C DOM
specification.

procedure Insert (wlIndex: Integer; oNode: TXmlNode) ;
Place the new node at a particular position within the list. If the index is
out of rangc, an crror occurs.

function Item(wIndex: Integer): TXmlNode;
Access the entries in the list via their position. If the supplied index is out
of range, a nil is returned.

16 Appendices

function RemoveNamedNode (sName: string): TXmlNode;
Find the node in the mapping with the given name and remove it from
the list. A reference to that node is returned. If no matching node is
found, return a nil instead.

procedure Replace (wIndex: Integer; oNode: TXmlNode) ;
Delete the node currently in the specified position and insert the new
node in its place. An error is raised if the index is out of range.

NOTE
The rReplace method is an extension to the W3C DOM specification.

function SetNamedItem(oNode: TXmlNode): TXmlNode;
Adds the given node to the mapping, using its NodeName as the index. If
an entry already exists with that name, the new node replaces it and a
reference to the deleted node is returned. Otherwise, the return value is
nil.

NOTE
Missing from the DOM specification are the namespace-aware versions of the
Get/Set/RemoveNamedItem methods above.

TXmIElement Class

Most of the nodes in the DOM will be TXmlElement objects (as shown in
Listing A-6). These represent the elements from the XML document, and
typically have attributes and child nodes attached to them.

Listing A-6: The TXmlElement declaration.

TXmlElement = class(TXmlNode)
public
constructor Create;
destructor Destroy; override;
property ElementText: string read GetElementText;
property FullEndTag: Boolean read FFullEndTag write FFullEndTag;
property IgnoreEndTag: Boolean read FIgnoreEndTag
write FIgnoreEndTag;
property TagName: string read FNodeName write FNodeName;
function CreateChildCDataSection(sText: string): TXmlCDataSection;
function CreateChildElement (sElem: string): TXmlElement;
function CreateChildText (sText: string): TXmlText;
function FindElement (sName: string): TXmlElement;
function GetAttribute(sName: string): string;
function GetAttributeNode (sName: string): TXmlAttribute;
function GetChildElementsByTagName (sName: string): TXmlNodeList;
function GetElementsByTagName (sName: string): TXmlNodelist;
function GetElementsByTagNameWithAttribute (
sName, sAttr, sValue: string): TXmlNodelist;
function MatchExpression(sTerm: string): TXmlNodelList;
procedure Normalize (bAddSpace: Boolean = False);
procedure RemoveAttribute (sName: string);
function RemoveAttributeNode (0OldAttr: TXmlAttribute): TXmlAttribute;
function SelectNodes (sQuery: string): TXmlNodelist;
function SelectSingleNode (sQuery: string): TXmlElement;
procedure SetAttribute(sName, sValue: string);
function SetAttributeNode (oNewAttr: TXmlAttribute): TXmlAttribute;
end;

Appendix A: CUESoft’s Document Object Model 17

The TxmlElement object’s properties and methods are listed below:

constructor Create;
Element nodes should not be created directly. Instead, use the
CreateElement method on the document object or the
CreateChildElement method described later.

property ElementText: string read GetElementText;
This read-only property returns the value of the single text node child of
this element. If there is no single text child, it returns an empty string,.

NOTE
The ElementText, FullEndTag, and IgnoreEndTag properties are not part of
the DOM Level 2 specification.

property FullEndTag: Boolean read FFullEndTag write
FFullEndTag;

Set this property to True to force the output of a full closing tag when
generating XML. When False (the default), an element that has no
children uses the shorthand syntax available in XML (placing a slash at
the end of the opening tag). This property can be used to maintain
compatibility with some existing applications (specifically HTML).

property IgnoreEndTag: Boolean read FIgnoreEndTag write
FIgnoreEndTag;

Setting this property to True causes the end tag to be omitted entirely if
the element has no children. By default, it is False, which always
generates an end tag. Again, this property is intended for use with
generating HTML, but should not be used in any true XML document.

property TagName: string read FNodeName write FNodeName;
Set or retrieve the name of the element through this property. It maps
directly onto the inherited NodeName property.

function CreateChildCDataSection(sText: string):
TXmlCDataSection;

This function creates a new CDATASection node and appends it to the
clement, returning a reference to the new node. You can achieve the
same thing through the CreateCDATASection method on the document
object, followed by an Appendchild call on this node.

NOTE
The createchildcbDataSection, CreateChildElement, and CreateChild-
Text methods are not part of the DOM Level 2 specification.

function CreateChildElement (sElem: string): TXmlElement;
Similarly, this function adds a newly created element node to the current
element, and returns a pointer to it.

function CreateChildText (sText: string): TXmlText;
Lastly, you can easily create and add a child text node with this method.
Again, you receive a reference to the new node as the return value.

18

Appendices

function FindElement (sName: string): TXmlElement;
Find the first descendant element node with the given tag name through
this method. The subtree is searched in a pre-order traversal. If no
matching node is found, a nil is returned.

NOTE
The FindElement method is not part of the DOM Level 2 specification.

function GetAttribute(sName: string): string;
Although you could use the Attributes property to deal with an
element’s attributes, there are several convenience methods to assist you.
This one returns the string value of the named attribute, or an empty
string if it cannot be found.

function GetAttributeNode (sName: string): TXmlAttribute;
Access the entire attribute node by name with this method. If the
attribute cannot be found, it returns nil.

function GetChildElementsByTagName (sName: string):
TXmlNodeList;
Similar to the GetElementsByTagName method, this one only searches
the immediate children of the element.

NOTE
The GetChildElementsByTagName method is not part of the DOM Level 2
specification.

function GetElementsByTagName (sName: string):
TXmlNodeList;
Obtain a list of all the elements with a given name that are descendants
of this node with this function. Use a name of “*” to get all elements in
the subtree. The entries in the list appear in the same order as a pre-order
traversal of the subtree.

function GetElementsByTagNameWithAttribute (sName, sAttr,
sValue: string): TXmlNodelList;

Another variation on the GetElementsByTagName method, this one
looks through all descendants, returning those elements that have the
given name and also an attribute with the specified name and value.

NOTE
The GetElementsByTagNameWithAttribute method is not part of the DOM
Level 2 specification, nor is the MatchExpression method below.

function MatchExpression(sTerm: string): TXmlNodelist;
This method searches the descendants of the element for nodes that
match the given expression, and returns those found as a list. Their order
in the list matches their order in a pre-order traversal of the hierarchy.

procedure Normalize (bAddSpace: Boolean = False);
Combine adjacent text nodes in the entire subtree beneath this element.
Setting the bAddSpace parameter to True causes an extra space
character to be placed between the contents of text nodes that are

Appendix A: CUESoft’s Document Object Model 19

concatenated. Doing so is not standard DOM functionality. However, the
parameter has a default value of False and can safely be omitted.

NOTE
In the DOM Level 2 specification, the Normalize functionality has moved to
the Node interface.

procedure RemoveAttribute (sName: string);
Remove the attribute with the given name using this method. Nothing
happens if a matching node is not found.

function RemoveAttributeNode (0OldAttr: TXmlAttribute):
TXmlAttribute;
Remove the specified attribute from the element’s list through this
method. A reference to that node is returned. If the given node is not an
attribute of the element, nothing happens.

function SelectNodes (sQuery: string): TXmlNodelist;
Retrieves a list of all the nodes that match the given XPath expression
(see Chapter 5). The current node acts as the starting point for relative
references. An empty list is returned if no matching nodes are found.

NOTE
The selectNodes and selectsingleNode methods are not part of the DOM
Level 2 specification.

function SelectSingleNode (sQuery: string): TXmlElement;
This method acts like the previous one, but returns only the first element
found, or nil if there are none.

procedure SetAttribute (sName, sValue: string);
Set the value of an attribute with this method. Any existing attribute with
the same name has its contents overwritten by the new value. The value
supplied is not parsed at all.

function SetAttributeNode (oNewAttr: TXmlAttribute) :
TXmlAttribute;

Use this method to add attributes that have internal structure beyond a
simple string value. Build your attribute node and attach its children
before calling this method. The new node replaces any existing attribute
with the same name, in which case a reference to the deleted node is
returned. Otherwise, it returns nil.

NOTE

Missing abilities from the DOM specification include the namespace-aware
versions of the methods above. Also, the hasAttribute and hasAttributeNs
methods are not implemented, although the 1ndexof method of the
Attributes node map provides similar information.

20 Appendices

TXmlAttribute Class

Attributes are attached to elements and are available through the Attributes
property on the Txm1Element nodes. Other than appearing in these lists, they
do not form a part of the normal DOM hierarchy. They have no parent and no
siblings, so the corresponding properties return nil. Their CUESoft definition
is shown in Listing A-7.

Listing A-7: The TXmlAttribute declaration.

TXmlAttribute = class(TXmlNode)
public
constructor Create; override;
destructor Destroy; override;
property Name: string read FNodeName write ENodeName;
property Specified: Boolean read FSpecified write FSpecified;
property Value: string read GetNodeValue write SetNodeValue;
function CloneNode (bDeep: Boolean = True): TXmlNode; override;
end;

The properties and methods of the TXmlAttribute object are discussed
below:

constructor Create;
As for elements, use the CreateAttribute factory method on the
document object instead of creating attributes yourself. You can also
instantiate them through the setAttribute method of an element
object.

property Name: string read FNodeName write FNodeName;
Retrieve or set the name of the attribute through this property. It maps
directly onto the inherited NodeName property.

property Specified: Boolean read FSpecified write
FSpecified;
This property returns True if the value for the attribute came from the
body of the XML document itself or was set through the value property,
and False if the value derives from a default specified for this attribute

in the DTD.
property Value: string read GetNodeValue write
SetNodeValue;

Read or write the string value of the attribute with this property. The
inherited NodeValue property has the same effect. Setting this value
causes any children of the attribute to be discarded and to be replaced
with just the supplied text. The value is not parsed at all, so any
embedded entity references are ignored.

TXmICharacterData Class

The TXmlCharacterData class (see Listing A-8) is the basis of all textual
nodes within the DOM. It supplies common functionality for the various
subclasses. The base class itself does not appear in the hierarchy.

Appendix A: CUESoft’s Document Object Model 21

Listing A-8: The TXmiICharacterData declaration.

TXmlCharacterData = class(TXmlNode)

public
property Data: string read FNodeValue write FNodeValue;
property Length: Integer read GetLength;
procedure AppendData(sData: string);
procedure DeleteData (wOffset, wCount: Integer);
procedure InsertData(wOffset: Integer; sData: string);
procedure ReplaceData (wOffset, wCount: Integer; sData: string);
function SubStringData (wOffset, wCount: Integer): string;

end;

The TXmlCharacterData object’s properties and methods are listed below.
As for the other DOM implementations, all offsets start at zero.

property Data: string read FNodeValue write FNodeValue;
Retrieve or set the text content of the node through this property.

property Length: Integer read GetLength;
Find the number of characters in the Data property, which may be zero.

procedure AppendData (sData: string);
Add the supplied text to the end of the existing value. Retrieve the
combined text from the Data property.

procedure DeleteData (wOffset, wCount: Integer);
Remove the text starting from the given offset, for the given number of
characters.

procedure InsertData (wOffset: Integer; sData: string);
Insert the supplied text into any existing value at the specified offset.

procedure ReplaceData (wOffset, wCount: Integer; sData:
string) ;
Delete the substring starting at the nominated offset and extending for
the given number of characters, and then replace it with the supplied text.

function SubStringData (wOffset, wCount: Integer): string;
Extract the section of text from the specified offset, for the given number
of characters.

TXmIText Class

Inheriting from the base character data node, the Txm1Text class (as shown in
Listing A-9) holds the actual content of the XML document within the DOM.
When a document is first loaded, some other node type separates all text nodes
from each other; contiguous sections of text in the document are placed into a
single text node. This state is restored by the Normalize method of the
element object.

Listing A-9: The TXmiText declaration.

TXmlText = class(TXmlCharacterData)
public

constructor Create;

function SplitText (wOffset: Integer): TXmlText;

function CloneNode (bDeep: Boolean = True): TXmlNode; override;
end;

22 Appendices

The properties and methods of the Txm1Text object are described below:

constructor Create;
Generate text nodes through the CreateTextNode method on the
document object, or the CreateChildText method on an element. Do
not construct text nodes directly.

function SplitText (wOffset: Integer): TXmlText;
Create a new text node containing all the text from the current node past
the specified offset, and return a reference to that node. The current text
node has that text deleted. The new node becomes the immediately
following sibling of the original node.

TXmICDataSection Class

Textual content containing characters that would normally be treated as
markup can be flagged as just straight text through CDATA sections. Within
the DOM these appear as TxmlCDataSection objects (as shown in Listing
A-10). This class inherits all the abilities of a normal text node and simply
serves as an indicator of its data’s origin.

Listing A-10: The TXmICDataSection declaration.

TXmlCDataSection = class(TXmlText)

public

constructor Create; override;

function CloneNode (bDeep: Boolean = True): TXmlNode; override;
end;

The TXmlCDataSection object’s methods are shown below:

constructor Create;
Do not construct CDATA section nodes directly. Use the
CreateCDataSection method on the document object or the
CreateChildCDataSection method of an element instead.

TXmIComment Class

Comments usually contain additional, non-essential information about a
document. Within the DOM they appear as TXmlComment objects (see Listing
A-11). Another text-based node type, all of its abilities are inherited.

Listing A-11: The TXmIComment declaration.

TXmlComment = class(TXmlCharacterData)
public

constructor Create; override;

function CloneNode (bDeep: Boolean = True): TXmlNode; override;
end;

The methods of the Txm1Comment object are discussed below:

constructor Create;
Build comments with the CreateComment method of the document
object. Do not create them directly with this constructor.

Appendix A: CUESoft’s Document Object Model 23

TXmIProcessinglnstruction Class

Processing instructions are designed to carry information through the
document for use by applications reading those documents. The
TXmlProcessingInstruction class (shown in Listing A-12) lets you
access their contents.

Listing A-12: The TXmlIProcessinglnstruction declaration.

TXmlProcessingInstruction = eclass(TXmlNode)
public
constructor Create; override;
property Data: string read FNodeValue write FNodeValue;
property Target: string read FNodeName write FNodeName;
function CloneNode (bDeep: Boolean = True): TXmlNode; override;
end;

A TXmlProcessingInstruction object’s properties and methods are listed
below:

constructor Create;
Use the document object’s CreateProcessingInstruction method
to instantiate these nodes, rather than this constructor.

property Data: string read FNodeValue write FNodeValue;
The remainder of the tag’s content appears in this property, from the first
non-white space character following the target through to the character
immediately before the closing “?>”.

property Target: string read FNodeName write FNodeName;
Retrieve or set the target application for the instruction with this

property.

TXmIDocumentType Class

The TXmlDocumentType class (see Listing A-13) encapsulates the
declaration of the document type for a document. It appears as the DocType
property of the document, although this may be nil. Within it are references
to the entities and notations defined within the document.

Listing A-13: The TXmIDocumentType declaration.

TXmlDocumentType = class(TXmlNode)
public
constructor Create; override;
destructor Destroy; override;
property Entities: TXmlNamedNodeMap read FEntities;
property Name: string read EFNodeName write ENodeName;
property Notations: TXmlNamedNodeMap read ENotations;
function CloneNode (bDeep: Boolean = True): TXmlNode; override;
end;

The properties and methods of the TXmlDocumentType object are shown
below:

24 Appendices

constructor Create;
Normally, a document type node is automatically created as a document
is loaded. Even if you did create one of these nodes, you cannot attach it
to a document since its DocType property is read-only.

property Entities: TXmlNamedNodeMap read FEntities;
Obtain access to a list of the external entities defined within the
document through this read-only property. This does not include internal
entities, which are automatically expanded, nor parameter entities. Each
item in the list is a TXm1Entity object.

property Name: string read FNodeName write FNodeName;
Retrieve the name of the document type from this property. This
corresponds to the name of the single top-level element in the document.

property Notations: TXmlNamedNodeMap read FNotations;
Access the notations defined in the document’s DTD with this read-only
property. Items in the list are all TXm1Notation objects.

TXmINotation Class

Notations describe the format of unparsed entities, of attributes, and of target
applications for processing instructions. They are represented by the
TxXmlNotation class (see Listing A-14) in this DOM and are retrieved from
the Notations property of the document type node.

Listing A-14: The TXmlINotation declaration.

TXmlNotation = class(TXmlNode)
public
constructor Create; override;
property PublicId: string read FPublicId write FPublicId;
property SystemId: string read FSystemId write FSystemld;
function CloneNode (bDeep: Boolean = True): TXmlNode; override;
end;

The TXm1lNotation object’s properties and methods are listed below:

constructor Create;
Use the document object’s CreateNotation method to build new
notation nodes.

property NodeName: string read FNodeName write FNodeName;
The name of the notation is found in this inherited property.

property PublicId: string read FPublicId write FPublicId;
Retrieve the public identifier for this notation from this property, or an
empty string if none is specified.

property SystemId: string read FSystemId write FSystemId;
This property provides the system identifier for the notation, or an empty
string if none is supplied.

Appendix A: CUESoft’s Document Object Model 25

TXmIEntity Class

The Txml1Entity class (see Listing A-15) supplies the definitions of external
entities read from the document’s DTD. Access them via the Entities
property of the document type node. No parameter or internal entities appear
in this list since these are automatically expanded and their value included in
the DOM. Only the definition of the entity is modeled, not the declaration
itself.

Listing A-15: The TXmlEntity declaration.

TXmlEntity = class(TXmlNode)
public
constructor Create; override;
property NotationName: string read FNodeName write FNodeName;
property PublicId: string read FPublicId write FPublicId;
property SystemId: string read FSystemlId write FSystemld;
function CloneNode (bDeep: Boolean = True): TXmlNode; override;
end;

The TxmlEntity object’s properties and methods are discussed below:

constructor Create;
Entity nodes are automatically created when a document is first loaded.
They cannot be added to a document type node thereafter.

property NodeName: string read FNodeName write FNodeName;

This inherited property provides the name of the entity.

WARNING

Unfortunately, the CUESoft DOM returns the name of the entity’s notation
through the NodeName property, rather than the name of the entity itself. There
is no way to retrieve the entity’s name unless you go to the underlying parser
and its onEntityDecl event.

property NotationName: string read FNodeName write
FNodeName;
Unparsed entities return the name of their notation type through this
property. For parsed entities, it returns an empty string.

NOTE

Although the NotationName property is mapped onto the node name field, it
does return the correct value. However, the node name field should hold the
name of the entity itself.

property PublicId: string read FPublicId write FPublicId;
Retrieve or set the public identifier for the entity from this property. If no
public identifier is specified, an empty string results.

property SystemId: string read FSystemId write FSystemId;
This property reads or writes the system identifier for the entity. Again, it
returns an empty string if no system identifier is available.

26 Appendices

TXmIEntityReference Class

References to parsed entities are placed into the DOM with the
TXmlEntityReference class (as shown in Listing A-16). The children of
this reference duplicate those of the named entity node (if available).

Listing A-16: The TXmIEntityReference declaration.

TXmlEntityReference = class(TXmlNode)
public

constructor Create; override;

function CloneNode (bDeep: Boolean = True): TXmlNode; override;
end;

NOTE

The CUESOoft parser always expands entity references within the body of the
document. So, when you load in a document, no entity reference nodes
appear within the DOM, only their corresponding entity’s subtree. Also, the
contents of entities declared in external subsets may not be available.

The properties and methods of the TXmlEntityReference object are
described below:

constructor Create;
As before, do not build these objects directly. Instead, use the
CreateEntityReference method of the document object.

property NodeName: string read FNodeName write FNodeName;
This inherited property provides the name of the referenced entity.

TXmIDocumentFragment Class

A document fragment never appears in the main DOM structure. Its purpose is
to manage subtrees of nodes outside of the document itself, allowing them to
be constructed or extracted before adding them back into the hierarchy. The
TXmlDocumentFragment class (see Listing A-17) provides this
functionality. It derives from the basic node without adding any new abilities.

Listing A-17: The TXmIDocumentFragment declaration.

TXmlDocumentFragment = class(TXmlNode)
public
constructor Create; override;
function CloneNode (bDeep: Boolean = True): TXmlNode; override;
end;
When a document fragment is added to the main DOM, it is not inserted itself.
Instead, all of its child nodes are placed into the hierarchy in its place.

The methods of a TXm1DocumentFragment object are shown below:

constructor Create;
Build document fragment nodes with the CreateDocumentFragment
method of the document object.

Appendix A: CUESoft’s Document Object Model 27

TXmIDocument Class

The primary access to the DOM is via the document object, as represented by
the TXmlDocument class (shown in Listing A-18). Another important
function of this class is to create new nodes to add to the DOM. Using the
factory methods provided here ensures that the nodes are compatible with the
document and each other.

Listing A-18: The TXmIDocument declaration.

TXmlDocument = class (TXmlNode)
public
constructor Create; override;
destructor Destroy; override;
property ActualCDATA: Boolean read FActualCDATA write FActualCDATA;
property DocType: TXmlDocumentType read FDocType;
property DocumentElement: TXmlElement read GetDocumentElement;
property DomImplementation: TXmlDomImplementation
read FDomImplementation;
property FormattedOutput: Boolean read FFormattedOutput
write FFormattedOutput;
property IdAttribute: string read FIdAttribute write FIdAttribute;
property IgnoreCase: Boolean read FIgnoreCase write FIgnoreCase;

function CloneNode (bDeep: Boolean = True): TXmlNode; override;
function CreateAttribute(sName: string): TXmlAttribute;

function CreateComment (sData: string = ''): TXmlComment;

function CreateCDataSection(sData: string = ''): TXmlCDataSection;

function CreateDocumentFragment: TXmlDocumentFragment;
function CreateElement (sTagName: string): TXmlElement;
function CreateEntityReference(sName: string): TXmlEntityReference;
function CreateProcessinglInstruction(sTarget: string;
sData: string = ''): TXmlProcessingInstruction;
function CreateTextNode(sData: string = ''): TXmlText;
function GetElementsByTagName (sName: string): TXmlNodelist;
procedure RemoveAll;
end;

The TXxmlDocument object’s properties and methods are discussed below:

constructor Create;
Documents are created as the result of loading an XML document
through the LoadDataSource or LoadMemory methods of the
TXmlObjModel class (described later). An empty document node exists
initially in the object model class that can be used to generate a new
document. All access should be through the Document property of the
object model class.

property ActualCDATA: Boolean read FActualCDATA write
FActualCDATA;
Set this property to True to output CDATA sections within the DOM as
plain text instead of surrounding them with the normal CDATA tags.
Leave it as False (the default) to use the CDATA syntax.

NOTE
The Actualcbata property is not part of the W3C DOM specification.

28

Appendices

property DocType: TXmlDocumentType read FDocType;
If a DTD exists for a loaded XML document, this read-only property
returns the corresponding TxmlDocumentType node. If no DTD is
specified, and for HTML documents, it returns nil.

TIP
You cannot create a document type declaration for a new document in
memory since this field property is read-only.

property DocumentElement: TXmlElement read
GetDocumentElement;
Retrieve the single, top-level element in the document with this read-
only property. You can also reach it via the ChildNodes property of the
document, but this property is more convenient.

property DomImplementation: TxmlDomImplementation read
FDomImplementation;
Access the DOM implementation for this document through this read-
only property.

NOTE
Since implementation is a reserved word in Delphi, this W3C DOM attribute
is renamed DomImplementation in the CUESoft package.

property FormattedOutput: Boolean read FFormattedOutput
write FFormattedOutput;

When True, this property causes the XML generated by the DOM to be
formatted for readability. This involves adding line feeds and indentation
surrounding the elements and text. When False (the default), the output
appears as a single string with no breaks.

NOTE
The FormattedOutput, IdAttribute, and IgnoreCase properties are not
part of the W3C DOM specification.

property IdAttribute: string read FIdAttribute write
FIdAttribute;
Specify a default attribute to be used as the elements” IDs when querying
with XSL and XQL (XML Query Language) expressions.

property IgnoreCase: Boolean read FIgnoreCase write
FIgnoreCase;

This property controls matching through the GetElementsByTagName
and SelectNodes methods. If set to True, matches are case-insensitive,
whereas setting it to False (the default) enforces matching on case.

function CloneNode (bDeep: Boolean = True): TXmlNode;
override;
Copy the document node and, if bDeep is True, all of its children to
create a new document.

Appendix A: CUESoft’s Document Object Model 29

function CreateAttribute(sName: string): TXmlAttribute;
Build a new TxmlAttribute node using this method, by passing in the
name of the new attribute. The resulting node still needs to be added to
an eclement to become part of the DOM. Use the clement’s
SetAttributeNode method.

function CreateComment (sData: string = ''): TXmlComment;
Generate a new TXmlComment node with the supplied text through this
method. Add the new node to an existing one as one of its children.

function CreateCDataSection(sData: string = ''):
TXmlCDataSection;

This method produces a new TXmlCDataSection node for adding to
the DOM. Specify the text content of the node when it is called. You can
also use the CreateChildCDataSection method of an element.

function CreateDocumentFragment: TXmlDocumentFragment;
Obtain a new TXmlDocumentFragment node with this method.
Document fragments are not added to the main DOM hierarchy, but are
used instead to manage nodes outside of that structure.

function CreateElement (sTagName: string): TXmlElement;
A new TxmlElement node is created by this method, passing in the
element’s name. Add it to the DOM as a child of another node. If placed
as the child of the document node itself, it also becomes the value of the
DocumentElement property. A new child element is automatically
added with the CreateChildElement method of an element node.

function CreateEntityReference(sName: string):
TXmlEntityReference;
Build a new TXmlEntityReference node using this method. Specify
the name of the entity to be inserted, and add the new node to the DOM
at the required position.

function CreateProcessingInstruction(sTarget: string;
sData: string = ''): XmlProcessingInstruction;

Generate a new TXxmlProcessingInstruction node via this method,
passing in the name of the target application and its command. Again,
add the new node to the DOM structure as the child of an existing node.

function CreateTextNode (sData: string = ''): TXmlText;
This method produces a new TXmlText node, with the specified content,
for adding to the DOM. Alternately, you can use the CreateChildText
method of an element to quickly add text to an element.

function GetElementsByTagName (sName: string):
TXmlNodelist;

Find all the elements that are descendants of the document and that have
the given name. Use a name of “*” to retrieve all nodes. The nodes
appear in the order of a pre-order traversal through the document tree. If
no matching nodes are found, an empty list is returned.

procedure RemoveAll;
Completely empty the document of all its children with this method.

30 Appendices

NOTE
The rRemovenll method is not part of the W3C DOM specification.

NOTE

Missing from the W3C DOM Level 2 specification are the importNode method
(whose functionality can be duplicated through the ForceownerDocument
method of the TxmliNode class), the getElementById method, and the
namespace-aware versions of the createElement, CreateAttribute, and
GetElementsByTagName methods.

TXmIDomimplementation Class

The TXmlDomImplementation class (see Listing A-19) provides functions
outside of any document. You access its abilities through the
DOMImplementation property of a document.

Listing A-19: The TXmIDomImplementation declaration.

TXmlDomImplementation = class
public

function HasFeature(sFeature, sVersion: string): Boolean;
end;

The methods of the TXxm1DomImplementation object are listed below:

function HasFeature (sFeature, sVersion: string): Boolean;
Determine whether this DOM implementation supports certain features
with this method. Given a particular feature name and required version, it
returns True if that functionality is available and False otherwise. The
version parameter may be left blank to match on any supported version.
This implementation currently recognizes the features “xML” and “HTML”
(case-insensitive), and version “1.0” of each.

TXmIObjModel Component

Since the DOM Level 1 specification, which is the level supported by this
implementation, defines no way of creating a document, it is left to the
designers to provide this functionality. In the CUESoft package, the
TXmlObjModel component (shown in Listing A-20) performs this necessary
task. Consequently, this entire class is an extension to the W3C DOM
specification (at least at Level 1).

Listing A-20: The TXmIObjModel declaration.

TPreserveSpaceEvent = procedure(oOwner: TObject;
sElementName: string; var bPreserve: Boolean) of object;
TResolveEntityEvent = function (oOwner: TObject;
sName, sPublicId, sSystemlId: string): string of object;

TXmlObjModel = eclass(TComponent)
protected
function GetErrorCount: Integer;
function GetOnPreserveSpace: TPreserveSpaceEvent;
procedure SetOnPreserveSpace (PreserveSpace: TPreserveSpaceEvent);

Appendix A: CUESoft’s Document Object Model 31

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
property Document: read FDocument;
property ErrorCount: Integer read GetErrorCount;
property Errors: TStringList read FErrors;
property XmlDocument: string read GetXmlDocument;
procedure ClearDocument;
function GetErrorMsg(wIdx: Integer): String;
function LoadDataSource(sSource: String): Boolean;
function LoadMemory(cpMem: PChar): Boolean;
function SaveToFile(sFile: string): Boolean;
published
property FormattedOutput: Boolean read GetFormattedOutput
write SetFormattedOutput;
property IdAttribute: string read GetIdAttribute
write SetIdAttribute;
property IgnoreCase: Boolean read GetIgnoreCase write SetIgnoreCase;
property NormalizeData: Boolean read FNormalizeData
write FNormalizeData
property OnPreserveSpace: TPreserveSpaceEvent read GetOnPreserveSpace
write SetOnPreserveSpace;
property OnResolveEntity: TResolveEntityEvent read FOnResolveEntity
write SetOnResolveEntity;
property Password: string read GetPassword write SetPassword;
property RaiseErrors: Boolean read FRaiseErrors write FRaiseErrors;
property UserName: string read GetUserName write SetUserName;
end;

Since this class derives from TComponent, it can appear on the component
palette and be dropped onto a form when required. Then set its properties and
load the required document in code. Alternately, you can instantiate a copy
entirely in code.

A TXmlObjModel component’s properties and methods are listed below:

constructor Create (AOwner: TComponent); override;
If you drag the component from the palette, you do not have to create an
instance yourself. Otherwise, use this constructor to generate an object
model for your use.

destructor Destroy; override;
If you create the object model yourself, remember to free it up when you
are finished. Objects are automatically destroyed when you drop the
component onto the form from the component palette.

property Document: read FDocument;
This read-only property provides access to the document in memory and
all its abilities. You should only use the document through this
mechanism.

property ErrorCount: Integer read GetErrorCount;
Find the number of errors that occurred during a parse through this read-
only property.

property Errors: TStringList read FErrors;
Retrieve a list of the errors from a parse with this read-only property.

property FormattedOutput: Boolean read GetFormattedOutput
write SetFormattedOutput;
Duplicating the same property on the document object, this property
controls the formatting of any XML generated from the DOM. When

32

Appendices

True, indentation and line breaks are added to make the text more
legible. When False (the default), the text is just one long string.

property IdAttribute: string read GetIdAttribute write
SetIdAttribute;

Also replicating a property on the document object, this one determines
what attribute is treated as the ID attribute for searches within the
hierarchy.

property IgnoreCase: Boolean read GetIgnoreCase write
SetIgnoreCase;
Another property copied from the document object. When True, this
property causes case to be ignored in matches using XSL and XQL
queries. When False (the default), case is used in determining a match.

property NormalizeData: Boolean read FNormalizeData write
FNormalizeData
Setting this property to True results in extra white space being stripped
from character data in the parse process. Otherwise, all text data is sent
through as is (the default).

property OnPreserveSpace: TPreserveSpaceEvent read
GetOnPreserveSpace write SetOnPreserveSpace;

This event triggers once for each element encountered in the parse
process. It supplies the name of that element and the current space
preservation setting, based on the NormalizeData property and any
xml:space attributes. An attached event handler may alter the
preservation flag.

property OnResolveEntity: TResolveEntityEvent read
FOnResolveEntity write SetOnResolveEntity;
External references can be resolved through this event. It passes across
the name of the entity, along with its public and system identifiers. Using
these you can adjust the actual path to the resource and send it back to
the parser as the result of the handler function.

property Password: string read GetPassword write
SetPassword;
When reading an XML file from an FTP site, this property establishes
the password used to gain access to that site.

property RaiseErrors: Boolean read FRaiseErrors write
FRaiseErrors;
Set this property to True to have the parser pass TXmlParserError
exceptions through to the application. Otherwise, they are trapped by this
component (the default).

property UserName: string read GetUserName write
SetUserName;

Complementing the Password property, this one sets the user ID for
retrieving documents from FTP sites. If not set, “anonymous™ is used.

property XmlDocument: string read GetXmlDocument;
Generate an XML document from the DOM in memory with this read-
only property.

Appendix A: CUESoft’s Document Object Model 33

procedure ClearDocument;
Delete the entire DOM with this method. A new document can then be
constructed.

function GetErrorMsg(wIdx: Integer): String;
Retrieve individual error messages from the parse process with this
method. Duplicating the abilities of the Error property, the index ranges
from zero to ErrorCount - 1.

function LoadDataSource(sSource: String): Boolean;
The heart of the process, this method invokes the parser on the specified
document. Files are identified either as local filenames, or as HI'TP or
FTP URLs. A return value of True results if the document is
successfully loaded and False is returned if problems are encountered.
In the latter case, check the Errors property for the reason(s).

function LoadMemory (cpMem: PChar): Boolean;
Similar to the previous method, this one parses a document held in
memory at the supplied location. Again, it returns T rue if successful and
False if not.

function SaveToFile(sFile: string): Boolean;
Having created your DOM in memory, use this method to write it to a
file. The document type declaration is not included in the document,
although the remainder is well-formed XML. You can specify either a
local filename or an FTP site to write to. The function returns True if it
succeeded and False if a problem arose.

TXmlIParser Component

The CUESoft package relies on a built-in parser to process XML documents
into the DOM structure. CUESoft’s parser is non-validating, although it does
check for well-formed documents. You can access the parser yourself and use
it to do your own processing by registering event handlers with it. The
TXmlParser component (see Listing A-21) can also dwell on the component
palette, making it easy to incorporate into your project. This class appears in
the XxmlParser unit.

Listing A-21: The TXmlParser declaration.

TAttributeEvent = procedure (oOwner: TObject;

sName, sValue: string; bSpecified: Boolean) of object;
TDocTypeDeclEvent = procedure (oOwner: TObject;

sDecl, sId0O, sIdl: string) of object;
TEntityDeclEvent = procedure (oOwner: TObject;

sEntityName, sPublicId, sSystemId, sNotationName: string) of object;
TNonXMLEntityEvent = procedure (oOwner: TObject;

sEntityName, sPublicId, sSystemId, sNotationName: string) of object;
TNotationDeclEvent = procedure (oOwner: TObject;

sNotationName, sPublicId, sSystemId: string) of object;

TPreserveSpaceEvent = procedure (oOwner: TObject;
sElementName: string; var bPreserve: Boolean) of object;
TProcessInstrEvent = procedure (oOwner: TObject;
sName, sValue: string) of object;
TResolveEntityEvent = function (oOwner: TObject;

sName, sPublicId, sSystemlId: string): string of object;
TValueEvent = procedure (oOwner: TObject; sValue: string) of object;

34

Appendices

TXmlParser = class(TComponent)
protected

property OnIgnorableWhitespace: TValueEvent
read FOnIgnorableWhitespace write FOnlIgnorableWhitespace;

public

constructor Create(oOwner: TComponent);
destructor Destroy; override;

property ErrorCount: Integer read GetErrorCount;
property Errors: TStringList read FErrors;
function GetErrorMsg(wIdx: Integer): string;

function ParseDataSource(sSource: string): Boolean;
function ParseMemory(cpMem: PChar): Boolean;
published

property NormalizeData: Boolean read FNormalizeData
write FNormalizeData;
property OnAttribute: TAttributeEvent read FOnAttribute
write FOnAttribute;
property OnCDATASection: TValueEvent read FOnCDATASection
write FOnCDATASection;
property OnCharData: TValueEvent read FOnCharData write FOnCharData;
property OnComment: TValueEvent read FOnComment write FOnComment;
property OnDocTypeDecl: TDocTypeDeclEvent read FOnDocTypeDecl
write FOnDocTypeDecl;
property OnEndDocument: TNotifyEvent read FOnEndDocument
write FOnEndDocument;
property OnEndElement: TValueEvent read FOnEndElement
write FOnEndElement;
property OnEntityDecl: TEntityDeclEvent read FOnEntityDecl
write FOnEntityDecl;
property OnNonXMLEntity: TNonXMLEntityEvent read FOnNonXMLEntity
write FOnNonXMLEntity;
property OnNotationDecl: TNotationDeclEvent read FOnNotationDecl
write FOnNotationDecl;
property OnPreserveSpace: TPreserveSpaceEvent read FOnPreserveSpace
write FOnPreserveSpace;
property OnProcessinglInstruction: TProcessInstrEvent
read FOnProcessingInstruction write FOnProcessingInstruction;
property OnResolveEntity: TResolveEntityEvent read FOnResolveEntity
write FOnResolveEntity;
property OnStartDocument: TNotifyEvent read FOnStartDocument
write FOnStartDocument;
property OnStartElement: TValueEvent read FOnStartElement
write FOnStartElement;
property Password: string read FPassword write FPassword;
property RaiseErrors: Boolean read FRaiseErrors write FRaiseErrors;
property UserName: string read FUserName write FUserName;

end;
TIP

To see CUESoft's parser in action, look at SAX for Pascal described
Chapter 14. Included is a SAX wrapper using the CUESoft offering.

constructor Create (oOwner: TComponent) ;

The properties and methods of a TxmlParser component are shown below
(most of which correspond directly with those in the TXm10bjModel class):

For easiest use, drag-and-drop one of these components from the palette,
then set its properties at design time. Otherwise, use this constructor to

build a parser in code for your use.

destructor Destroy; override;

If you create the parser yourself, do not forget to release its resources

when finished.

Appendix A: CUESoft’s Document Object Model 35

property ErrorCount: Integer read GetErrorCount;
Find the number of errors from the parse process with this read-only

property.

property Errors: TStringList read FErrors;
Retrieve all the reasons for errors during the parse through this read-only
property.

property NormalizeData: Boolean read FNormalizeData write
FNormalizeData;
Strip out extra white space from the document when this property is set
to True. Otherwise, all text is passed through unchanged to the
OnCharData event (the default). CDATA sections are not affected by
this property.

property OnAttribute: TAttributeEvent read FOnAttribute
write FOnAttribute;
Respond to attributes encountered in the document through this event,
which fires before the OnstartElement event for their containing
element. The attribute name and value, and a flag indicating the origin of
that value, are passed to the event handler.

property OnCDATASection: TValueEvent read FOnCDATASection
write FOnCDATASection;
CDATA sections from the document trigger this event, which receives
the entire contents of that section.

property OnCharData: TValueEvent read FOnCharData write
FOnCharData;
Normal textual content causes this event to fire. Each contiguous section
of text appears in one event through the supplied parameter.

property OnComment: TValueEvent read FOnComment write
FOnComment;
The entire content of a comment from the document is available within a
handler attached to this event.

property OnDocTypeDecl: TDocTypeDeclEvent read
FOnDocTypeDecl write FOnDocTypeDecl;

Encountering the document type declaration in the document causes this
event to trigger. The name of the document type, and its public and
system identifiers are passed across to the event handler. Note that
unparsed entities and notations declared in the DTD are notified in
events that occur before this one.

property OnEndDocument: TNotifyEvent read FOnEndDocument
write FOnEndDocument;
Once the entire document has been processed, this event fires. Use this
event to complete your processing and to release any resources no longer
required.

property OnEndElement: TValueEvent read FOnEndElement
write FOnEndElement;
Receive notification of the end tag for an element through this event. The
name of the element is supplied. All the content of that element appears
as events between this one and its corresponding OnStartElement.

36

Appendices

property OnEntityDecl: TEntityDeclEvent read
FOnEntityDecl write FOnEntityDecl;
Unparsed entity declarations within the document type declaration
trigger this event. Save the entity’s name, public and system identifiers,
and notation name from the parameters passed in. These events occur
before the OnDocTypeDecl event to which they apply.

property OnIgnorableWhitespace: TValueEvent read
FOnIgnorableWhitespace write FOnIgnorableWhitespace;

White space outside of normal text content is notified through this event.
However, the fact that it can be ignored is only available if the document
is validated against a DTD. Hence, this event is not currently available
and appears as a protected property on the parser.

property OnNonXMLEntity: TNonXMLEntityEvent read
FOnNonXMLEntity write FOnNonXMLEntity;
This event is triggered when a non-XML entity is encountered in the
document. The callback lets you respond to this occurrence and perhaps
provide some level of support for the entity within your application.

property OnNotationDecl: TNotationDeclEvent read
FOnNotationDecl write FOnNotationDecl;

The notations used by entities and processing instructions trigger this
event. Save the name, public, and system identifiers for later use. These
events arrive before the event for the document type declaration to which
they belong.

property OnPreserveSpace: TPreserveSpaceEvent read
FOnPreserveSpace write FOnPreserveSpace;

Fired for each clement encountered, this event lets you override the
preservation flag setting. Check the element name and current setting,
and update the flag if required.

property OnProcessingInstruction: TProcessInstrEvent read
FOnProcessingInstruction write
FOnProcessingInstruction;

Each processing instruction found in the document triggers this event.
The target application and the actual command are supplied as
parameters.

property OnResolveEntity: TResolveEntityEvent read
FOnResolveEntity write FOnResolveEntity;
You can perform resolution for external entities through this event.
Given the entity’s name and its public and system identifiers, you should
return the name of the actual resource to reference.

property OnStartDocument: TNotifyEvent read
FOnStartDocument write FOnStartDocument;
Fired once at the start of the parse process, use this event to initialize
your application in preparation for a new document.

property OnStartElement: TValueEvent read FOnStartElement
write FOnStartElement;
The opening tag for each element triggers this event, supplying the name
of the element encountered. Recall that the attributes for that element

Appendix A: CUESoft’s Document Object Model 37

have already appeared in OnAttribute events prior to their containing
element.

property Password: string read FPassword write FPassword;
Set this property to supply a password when accessing documents at FTP
sites.

property RaiseErrors: Boolean read FRaiseErrors write
FRaiseErrors;
When set to True, this property causes parse errors (TXmlParserError
exceptions) to be sent directly to the application. Otherwise, they are
trapped internally and end the parse process in error (the default).

property UserName: string read FUserName write FUserName;
For accessing FTP sites, specify a user ID to give with this property. If
not set, it defaults to “anonymous”.

function GetErrorMsg(wIdx: Integer): string;
Retrieve individual error messages through this function. The index
ranges from zero to ErrorCount - 1.

function ParseDataSource(sSource: string): Boolean;
Retrieve the document specified and parse its contents, invoking the
appropriate events as necessary. The source specification may be either a
local filename, or an HTTP or FTP URL. A True results if the parse
succeeds and a False if it fails. Check the Errors property in the latter
case for the reason(s) it failed.

function ParseMemory (cpMem: PChar): Boolean;
Similarly, this method parses a document in memory, returning True on
success and False on failure.

Loading the CUESoft DOM

For comparison purposes, you can build the same XML viewer from Chapter
9, but using the CUESoft DOM. The Txml0bjModel class is the main entry
point into the package. Since this is a Delphi component you can drag it from
the component palette, or create it in code, as shown in Listing A-22. Do not
forget to free it after use.

Listing A-22: Loading the document.

{ Load an XML document }
procedure TfrmXMLViewer.LoadDoc(Filename: string);
var
XMLDOM: TXmlObjModel;
begin
pgcDetails.ActivePage := tshDocument;
{ Initialize document-wide details for display }
InitDocumentDetails;
{ Load the source document }
memSource.Lines.LoadFromFile (Filename) ;
dlgOpen.Filename := Filename;
{ Instantiate the DOM }
XMLDOM := TXmlObjModel.Create(nil);
trvXML.Items.BeginUpdate;

38

Appendices

try
{ Suppress white space? }
XMLDOM.NormalizeData := mniSuppressWhitespace.Checked;

{ Parse the document }
if not XMLDOM.LoadDataSource (Filename) then
raise Exception.Create(
Format (NoLoadError, [XMLDOM.Errors.Text]));

edtSystemId.Text := Filename;
{ Add the structure to the tree view }
AddElementToTree (XMLDOM. Document, nil);
trvXML.Items[0] .Expand(False);

finally
trvXML.Items.EndUpdate;
{ Release the DOM }
XMLDOM. Free;

end;

end;

An item on the menu in the viewer lets you suppress text nodes that contain
only white space. This value is transferred directly to the NormalizeData
property of the DOM. Calling the LoadDataSource method on the object
model class then loads and parses the specified document, returning a False
value if it fails. In that case you can raise an exception with the list of
problems from the Errors property. Otherwise, pass the newly created
document, accessed through the Document property, to the routine that builds
up the tree view on the page.

Like the previous example, the construction of the tree view relies on
recursive calls to the AddElementToTree routine (see Listing A-23). Initially
the nodes can be treated in a generic manner to extract a meaningful display
value for them. Thereafter, the node type determines what additional
information is required and how to retrieve it. Each type is cast to its
appropriate subclass before accessing its attributes.

Listing A-23: Reading the nodes.

{ Add a TXMLElement to the tree view }
function AddElement (Parent: TTreeNode; Name: string;
Element: TXMLElement): TTreeNode;
begin
FList.Add (Element) ;
Result := trvXML.Items.AddChildObject (Parent, Name, Element);
with Result do
begin
ImageIndex := Ord(Element.ElementType);
SelectedIndex := Imagelndex;
end;
end;

{ Add current element to the treeview and

then recurse through children }
procedure AddElementToTree (Node: TXmlNode; TreeParent: TTreeNode);
var

Index: Integer;

DisplayName: string;

NewNode: TTreeNode;

Attribs: TStringlist;

Appendix A: CUESoft’s Document Object Model

{ Extract an attribute value from a string }
function GetPseudoAttr(const Name, Data: string): string;
var

PosStart, PosEnd: Integer;

begin
Result = '
PosStart := Pos(Name, Data);
if PosStart = 0 then
Exit;
PosStart := PosStart + Length(Name) + 1;
PosEnd := Pos(Data[PosStart],

Copy(Data, PosStart + 1, Length(Data))):-
if PoskEnd = 0 then
Result := "'
else
Result := Copy(Data, PosStart + 1, PosEnd - 1);
end;

begin
{ Generate name for display in the tree }
if Node.NodeType in
[TEXT NODE, COMMENT NODE, CDATA SECTION NODE] then

begin
if Length (Node.NodeValue) > 20 then
DisplayName := Copy(Node.NodeValue, 1, 17) + '...'
else
DisplayName := Node.NodeValue;
end
else
DisplayName := Node.NodeName;

{ Create storage for later display of node values }
case Node.NodeType of
ELEMENT NODE:
with Node as XmlObjModel.TXmlElement do

begin
Attribs := TStringlist.Create;
try
if HasAttributes then
for Index := 0 to Attributes.Length - 1 do
with Attributes.Item(Index) do
Attribs.Values [NodeName] := NodeValue;
NewNode := AddElement (TreeParent, DisplayName,
TXMLElement.Create (xtElement, NodeName,
Namespace, BaseName, '', Attribs)):;
finally
Attribs.Free;
end;
end;
TEXT NODE:
with Node as TXmlText do
NewNode := AddElement (TreeParent, DisplayName,
TXMLElement.Create (xtText, '', '', '', Data, nil));

CDATA SECTION NODE:
with Node as TXmlCDATASection do
NewNode := AddElement (TreeParent, DisplayName,

TXMLElement.Create (xtCData, '', '', '', Data, nil));

ENTITY REFERENCE NODE:

NewNode := AddElement (TreeParent, DisplayName,
TXMLElement.Create (xtEntityRef, Node.NodeName,
T T T nll)).

14 14 14 r

PROCESSING INSTRUCTION NODE:
with Node as TXmlProcessinglInstruction do
begin
NewNode := AddElement (TreeParent, DisplayName,
TXMLElement.Create(xtInstruction, Target,
‘', ''", Data, nil));

39

40 Appendices

if UpperCase(Target) = XMLValue then

begin
{ Special handling for the XML declaration }
edtVersion.Text := GetPseudoAttr (VersionAttr, Data);
edtEncoding.Text GetPseudoAttr (EncodingAttr, Data);
cbxStandAlone.Checked := (UpperCase (GetPseudoAttr (

StandAloneAttr, Data)) = YesValue);
end;
end;

COMMENT NODE:
with Node as TXmlComment do
NewNode := AddElement (TreeParent, DisplayName,
TXMLElement.Create (xtComment, '', '', '', Data, nil));
DOCUMENT NODE :
with Node as TXmlDocument do
begin
NewNode := AddElement (TreeParent, XMLDocDesc,
TXMLElement.Create (xtDocument, XMLDocDesc, '', '', '', nil));
AddElementToTree (DocType, NewNode);
end;
DOCUMENT TYPE NODE:
with Node as TXmlDocumentType do
begin
edtDocType.Text := Name;
NewNode := AddElement (TreeParent, DTDDesc,
TXMLElement.Create (xtEntityRef, DTDDesc, '', '', '', nil));
for Index := 0 to Entities.Length - 1 do
AddElementToTree (Entities.Item(Index), NewNode);
for Index := 0 to Notations.Length - 1 do
AddElementToTree (Notations.Item(Index), NewNode) ;
end;
ENTITY NODE:
with (Node as TXmlEntity), stgEntities do

if NotationName <> '' then
begin
{ Unparsed entity }
if Cells[0, RowCount - 1] <> '' then
RowCount := RowCount + 1;
Cells[0, RowCount - 1] := NodeName;
Cells[1, RowCount - 1] = PublicId;
Cells[2, RowCount - 1] := SystemId;
Cells[3, RowCount - 1] := NotationName;
end
else
{ Parsed entity }
NewNode := AddElement (TreeParent, DisplayName,
TXMLElement.Create (xtEntityRef, NodeName,
'Yy ', "', nil));

NOTATION NODE:
with (Node as TXmlNotation), stgNotations do

begin

if Cells[0, RowCount - 1] <> '' then
RowCount := RowCount + 1;

Cells[0, RowCount - 1] := NodeName;
Cells[1, RowCount - 1] = PublicId;
Cells[2, RowCount - 1] := SystemId;

end;

end;

{ And recurse through any children }
if Node.HasChildNodes then
for Index := 0 to Node.ChildNodes.Length - 1 do
AddElementToTree (Node.ChildNodes.Item(Index), NewNode);
end;

Elements have their attributes converted into a string list before saving all the
details in a TXMLElement object. Note that this is a local class defined in the
viewer unit, and does not refer to the TxmlElement class of the CUESoft

Appendix A: CUESoft’s Document Object Model 41

package. The local definition replaces the external one, so all references to this
class use the internal one. To access the original class, you must prefix it with
the name of its unit, Xm10bjModel.TXmlElement. The results of processing
an element are seen in Figure A-2.

Figure A-2: Displaying an element.

Elw ML Viewer [CueS5oft DOM] =]
File Wiew
ElEd movies =] LRI |
- mavie
I_'—J«:_@' TTICIE: Lozal name Imm-'ie
[?I--?'mgtar \War I.-’-'l.ttril:uute ’Value '
=5 length
- k1 rating PG
EI{E,B' director logo-url 5w -loga
83 Geogel |y S -site
=< staring
132 star
©Lga Liam
Sl star
{3 Ewar
132 star -
COLgR Jake
132 star
5By Matal
=@ synopsis =
_ﬂ s
Figure A-3: Text content within the viewer.
Elw ML Viewer [CueS5oft DOM] =]
File Wiew
- movie = Test/CDATA Section
El@ moie "when the evil Trade Federation plats to take over the peaceful planet of Maboo, Jedi :_I
-2 name warrior Qui-Gaon Jinn and his apprentice Obi-wan F.enobi embark on an amazing
Star'Wars - TI adventure to save the planet. 'With them on their joumey is the young queen Amidala,
Gungan outcast Jarar Binksz, and the powerful Captain Panaka, who will all travel to
the faraway planets of Tatooine and Coruscant in a futile attempt to zave their world
; from Drarth Sidious, leader of the Trade Federation, and Darth Maul, the strongest
-2 director Dark Lord of the Sith bo ever wield a lightsaber.
George Lucas
-5 staring
B star
Liam Mee
[star
Ewan M
-2 star
LR Jake Loy
[star b
R Matalie Pe
-2 synopsis
=%/ hen ¢ -
El | » [

42

Appendices

Text type nodes, including CDATA sections and comments, simply copy their
content into the corresponding field in the TXmlElement for later use. An
example of these is shown in Figure A-3. Processing instructions follow a
similar path, placing their command content in the data field of the storage
object. A special case exists for the XML declaration whereby its pseudo-
properties are extracted and transferred to particular fields on the document
page of the viewer.

The rest of the information for the document page comes from the
document type node, and its entity and notation properties. The latter are not
actually children of the document type node in the CUESoft DOM, so you
must step through them within their lists and manually invoke the next level of
node processing. Thereafter, the notation and unparsed entity nodes get added
to the grids on the document page. The document type node also supplies the
name of the top-level element for the document. Figure A-4 shows all this
information on the document page in the viewer.

Figure A-4: The document page in the viewer.

=ML Viewer [CueSoft DOM] M=l
File

Wigw

=2 mavie-matcher Verxinnirﬂ_ Encading [UTF-8

S5 movies

Doc. Type lmovie-watcher [Stand alone
sl Public Id |
Sample ML doc - - -
wnl stylesheet Spstem |d ID.'\Data\Keﬂh'\XmIBan\mnwe-watcher.ﬁml

Fi- movie Entities
'::I‘Eﬁ TS Mame Public Id System |d Matation
{%J < name hittp: A, stanaars. com./epis
St__ GIF http: A, starwars, comdepizc GIF
-2 length
1 e
E}' ‘E’ﬁ directe MHotations
1 @ Gt Name Public 1d System 1d
= starnn
B st P ACA/DTD HTML 4.0 Tra
LR GIF ivien exe
@,
| o

Entity references do not appear within the CUESoft DOM since it expands all
such references during the parse process. Only the results of the expansion are
passed along. Similarly, parsed entities do not appear within the document
type node’s list of entities.

Finally, each child of the current node is processed in turn through a
recursive call. The newly created TTreeNode is passed along to provide the
context for any additions to the view.

Summary

The CUESoft DOM implements the W3C DOM Level 1 specification very
closely, and includes a few elements of the Level 2 specification. However, it

Appendix A: CUESoft’s Document Object Model 43

does not provide full support for namespaces, which limits its usefulness in
some situations.

Having the DOM available as Delphi components and classes makes it
very simple to use within your application. The initial steps can be performed
without any coding by dragging the TxmlObjModel component from the
palette onto your form, then setting its properties in the inspector. Once
compiled, the parser and DOM become part of your executable, making it
casier to distribute.

The parser in this package can be used on its own without building the
associated DOM. Include the XmlParser unit in your project and create an
instance of the TXmlParser component, or drag one from the component
palette and drop it on your form. By registering event handlers with the parser,
you can respond to the items within the XML document as they are
encountered. See the SAX for Pascal discussion in Chapter 14 for an example
of its use.

Appendix B

Mass Electronic

Mail‘Quts
The purpose of the mass-mailer program described in this appendix is to
perform mass electronic mail-outs based on a document template. Fields
within the template are merged with recipient data (extracted from a
datasource) to customize the mailings. An additional objective is to make the
application as modular as possible, allowing you to easily maintain different
parts independently.

To protect the program against future technology changes, it relies on
several standards, each of which is encapsulated in a class:

XML is used for the configuration properties, as well as for the template
containing the message to be sent out. The text-based format of XML
allows these files to be easily maintained through normal text editors, in
addition to specialized XML editors. Changes to the message template can
be made without affecting the rest of the program, nor requiring a
recompile.

SQL is used to retrieve data from a datasource. Information from here
determines where the e-mails are sent and the field values that can be
included in the message. Access to the datasource uses a BDE alias.
Together, this approach means that your data can reside in almost any
format, since Delphi provides access to several databases natively and
many others through ODBC and OLE DB. Using SQL gives you a
common method for retrieving the data, freeing you from worrying about
how it is actually held. If the data needs to be moved (to a different server
and/or to a more powerful database), then all you need to do is update the
BDE alias and the program still runs as before.

The Simple Mail Transfer Protocol (SMTP) is used to communicate with
the e-mail server for the dispatch of the messages.

The program works as follows (see Figure B-1):

I. You read in an XML configuration document that contains the various
settings to use in the current run. This file details the SMTP attributes, the
database connection, and the name of the file containing the message
template to be used.

2. The actual query and the message template are read in from another XML
document (as identified in the configuration parameters above).

44

Appendix B: Mass Electronic Mail-Outs 45

W

You retrieve your list of recipients from the database, which you access
using the BDE alias from the configuration file and the SQL query from
the template.

4. For each record retrieved, merge the requested fields from the database
into the message template.

5. The merged messages are sent out using SMTP, allowing you to talk to
any number of mail servers. For testing purposes the messages are
redirected to a log file where they can be reviewed.

Figure B-1: Data flow through the program.

XML
Config file > XMLConfig

XML
MailTemplateMessage [¢ | Template

II SQL v

Database MailTemplateQuery

v SMTP

MailTemplateSender

h 4
Log MailTemplatelLog

Loading the Configuration Properties

The loading of the program properties is accomplished in a generic manner,
retrieving them from an XML document. The hierarchy within the XML file
determines the names of the properties, compiled from the full element path to
the value (separated by periods (.) and ignoring the top-level element), with
the property value coming from the actual text content. For example, the XML
configuration file in Listing B-1 results in the accumulation of these properties
and values:

46

Appendices

smtp.host=mail.thingies.com
smtp.user=keith

smtp. from=kbwood@thingies.com
database.alias=mailtemp
settings.pauseTime=2000
settings.template=MailMessage.xml
settings.testing=Y

Listing B-1: Sample XML configuration file.

<?xml version="1.0"?2>
<mailTemplate>
<smtp>
<host>mail.thingies.com</host>
<port/>
<user>keith</user>
<from>kbwood@thingies.com</from>
</smtp>
<database>
<alias>mailtemp</alias>
<user/>
<password/>
</database>
<settings>
<pauseTime>2000</pauseTime>
<template>MailMessage.xml</template>
<testing>Y</testing>
</settings>
</mailTemplate>

This layout takes advantage of the structure inherent in XML to group related
property values. It also builds on the ability of XML documents to be
processed when they are merely well-formed, without requiring conformance
to a DTD. In this way, the technique is general enough that it could be reused
elsewhere.

NOTE

Recall that a well-formed document simply follows the conventions of XML —
only one top-level element, all elements have matching end tags in order, etc.
If the document claims to follow a DTD and, in fact, does, then it is deemed to
be valid. The DTD prescribes which elements and attributes may appear
where within the document. In many cases, well-formed documents are
sufficient for useful work.

To aid in its reuse, the functionality of the property loading is placed into its
own unit, XMLCon£fig. Property names and values are placed into a string list
using its Values property, providing a simple way to retrieve them by name
later on. The LoadPropertiesFromxML procedure (see Listing B-2) takes
the name of the file to load and a reference to a string list and fills the latter
with the properties found. Just add this unit to another project to reuse its
abilities.

Listing B-2: Configuration properties from XML.

{ Open the configuration file and then load the properties }
procedure LoadPropertiesFromXML (Filename: string; Props: TStrings);
var

XMLDoc: IXMLDOMDocument;

Index: Integer;

{ Recursively read XML document until text leaves are reached.
Property name is the accumulated tags to this point
(separated by periods) .

Appendix B: Mass Electronic Mail-Outs 47

Property value is the actual text.
Add these into a string list using its Values property. }
procedure LoadSubProperties(Element: IXMLDOMNode;
PropPrefix: string);
var
Index: Integer;
begin
with Element do
if (NodeType NODE TEXT) or (NodeType = NODE CDATA SECTION) then
Props.Values[Copy(PropPrefix, 2, Length(PropPrefix) -1)] :=
NodeValue
else
for Index := 0 to ChildNodes.Length -1 do
LoadSubProperties (ChildNodes[Index],

PropPrefix + '.' + NodeName);
end;
begin
XMLDoc := CoDOMDocument.Create;
Props.Clear;
try

XMLDoc.Load (Filename) ;
{ Read through each second level element and process them }
with XMLDoc.DocumentElement do

for Index := 0 to ChildNodes.Length -1 do
LoadSubProperties (ChildNodes[Index], ''):;
finally
XMLDoc := nil;
end;

end;

The routine itself creates an instance of the Microsoft XML parser,
IXMLDOMDocument, and asks it to parse the specified document. It then steps
through all the child nodes of the main document element and calls the
internal procedure, LoadSubProperties, on each. This latter routine tests
for text-type nodes and creates an entry in the properties list when one is
found. The name for the property is built up from the names of the elements
leading to the text node, which is achieved through recursive calls to this same
routine for embedded child nodes.

TIP

Freeing up the DOM in the finally clause is not strictly necessary. Delphi
automatically decrements the reference count for an interface and frees it
when zero when its variable goes out of scope.

Mail Message Template

Once the configuration properties have been loaded, you can extract the name
of the message template file and load that, too. This file is another XML
document that holds the text of the message to be sent, along with the query
used to retrieve the recipients and their details. A sample template is shown in
Listing B-3.

Listing B-3: XML mail-out template.

<?xml version="1.0"72>

<template>
<query emailfield="FEmailAddress">select * from customer</query>
<subject>Come visit your new Web site</subject>
<message>Dear <field>FirstName</field>,

48

Appendices

Our new Web site is up and running at http://www.thingies.com.
As <field>Position</field> of <field>Company</field> we think you
would find something of interest here.
Yours sincerely,
Keith Wood
</message>
</template>

First, the SQL query is specified. The only database field that needs to be
specifically identified for the application’s use is the recipient’s e-mail
address, which is done through the emailfield attribute of the query
element. Otherwise, the query can be as complex or as simple as necessary
and can retrieve whatever fields it requires for use in the message itself.
Recipients can easily be filtered out of the database as a whole for targeted
mailings — just include an appropriate where clause in the query.

The subject of the e-mail appears in the subject element, with the body
of the message being specified in the message element. Within the latter you
can insert values from fields in the database by positioning field elements,
containing the name of the field to display, at the appropriate points in the text.
Any formatting of the field values can be done within the SQL query, so no
additional processing should be necessary here.

Using XML means that the templates can be maintained by anyone with a
text or XML editor. A minimal knowledge of SQL is required. To hide a
complex query, a view could be constructed presenting the necessary values in
a simple-to-use format. Having the database query in the document along with
the message text ensures that the two remain synchronized. As a security
measure, the logon details for the database are not included in the XML
message template.

The XML document is loaded and accessed through the TMail-
TemplateMessage class, which resides in its own unit, MailTemplate-
Message. In its constructor the class creates an instance of the Microsoft
XML parser, and requests this to load the specified XML file. Thereafter, you
have access to the complete contents of the document. Setting the
preserveWhiteSpace property to True ensures that your message appears
in the e-mail the same way it does in the template. If this property was left at
False, white space next to the field elements is lost.

{ Initialization }
constructor TMailTemplateMessage.Create(Filename: string);
begin

inherited Create;

FXMLDoc := CoDOMDocument.Create;

FXMLDoc.preserveWhiteSpace := True;

FXMLDoc.load (Filename) ;
end;
Two methods provide easy access to the elements and attributes within the
document (see Listing B-4). NodeVvalue returns the text contained within the
specified element, or an empty string if the element cannot be found. The
routine assumes that there is only one of each type of eclement in the
document, and that it contains only a single text node. Attributevalue
returns the value of the named attribute of a given element. Again, a single
occurrence of the element is assumed, and an empty string is returned if the
attribute or node does not exist.

Appendix B: Mass Electronic Mail-Outs 49

Listing B-4: Retrieving element and aftribute values.

{ Return the value of the named attribute -
assumes only one such node }

function TMailTemplateMessage.AttributeValue(
NodeName, AttrName: string): string;

var
Elements: IXMLDOMNodelist;
begin
Elements := FXMLDoc.getElementsByTagName (NodeName) ;
if Elements.length = 0 then
Result := "'
else
Result :=
Elements.item[0] .attributes.getNamedItem(AttrName) .text;
end;

{ Return the value of the named node -
assumes only one such node and no children }
function TMailTemplateMessage.NodeValue (NodeName: string):

string;
var
Elements: IXMLDOMNodelist;
begin
Elements := FXMLDoc.getElementsByTagName (NodeName) ;
if Elements.length = 0 then
Result := "'
else
Result := Elements.item[0].text;
end;

In both routines you use the getElementsByTagName method of the
document to locate and return the required node. Actually, this routine returns
a list of nodes, but you only expect a single result. This method saves you the
process of searching through all the nodes yourself. From the list, it is easy to
retrieve the node of interest and then its value or attribute.

The main activity involving the XML document is the processing of the
message template and the substitution of field values in marked positions. The
ParseMessage method provides this functionality (see Listing B-5),
accepting a string list that contains the field mappings for the current record.
The mappings are established and accessed using the values property of a
string list, which associates a text value with an identifying key.

Listing B-5: Performing the mail merge.

{ Parse the message tag and return its value }
function TMailTemplateMessage.ParseMessage (Fields: TStrings):
string;
var
Elements: IXMLDOMNodelist;
FieldValue: string;
Index: Integer;
begin
Elements := FXMLDoc.getElementsByTagName (MessageTag);
if Elements.length = 0 then
raise EMailException.Create (NoMessage)

Result := '';
with Elements[0] do
for Index := 0 to childNodes.length -1 do

{ Add text elements directly }
if (childNodes[Index].nodeType = NODE TEXT) or
(childNodes[Index] .nodeType = NODE CDATA SECTION)
then
Result := Result + childNodes[Index] .text
{ For 'field' elements get the field value }

50 Appendices

else if (childNodes[Index].nodeType = NODE ELEMENT) and
(childNodes[Index] .nodeName = FieldTag) then

begin
FieldValue := Fields.Values[childNodes[Index].text];
if FieldValue = '' then

{ Error 1f no such field }
raise EMailException.Create(
Format (MissingField, [childNodes[Index].text]));

if FieldValue = Empty then
{ Replace empty field notation with empty string }
FieldvValue := '';

Result := Result + FieldValue;

end;
end;

You locate the message clement in the document (again using the
getElementsByTagName method) and then step through each of its child
elements, constructing the message text as you go. The children should only
consist of text nodes, which are appended directly to the message, or field
elements, for which you extract the field name and then append the value of
that field from the mapping. Note that the text method of a node returns all
the text contained within that node (at any level), so you do not have to
traverse down to the actual text node and retrieve its value. An exception
occurs if the field does not exist in the record (denoted by an empty string
being returned from the mapping).

TIP

One special case exists when the field has an empty string value. If you were
to try to place this directly in the field list, it would not save the entry (the list
automatically returns an empty string for any key that does not have a value
set). To let you recognize the difference between a field that does not exist at
all, as opposed to one that has an empty value, you must substitute a flagging
value for the missing one. This flag, the constant Empty, is checked for when
the value is retrieved and is then reset to its empty value.

Database Access

In keeping with the modular approach, all the database access is contained
within one unit, MailTemplateQuery, and managed through the
TMailTemplateQuery class. An instance of the class is created and
initialized by passing to it the configuration properties and the query to be
executed (from the message template XML document).

From the configuration details it extracts the BDE alias and logon
parameters. It then creates internal instances of a TDatabase and a TQuery,
which are initialized from the passed-in values, before opening the query (see
the code in Listing B-6).

Listing B-6: Initializing the query and extracting its field values.
{ Initialization—connect to database and open query }

constructor TMailTemplateQuery.Create(Props: TStrings;
QuerySQL: string);

begin
inherited Create;
FFields := TStringlist.Create;

FDatabase := TDatabase.Create(nil);

Drop

Appendix B: Mass Electronic Mail-Outs 51

with FDatabase do

begin
AliasName := Props.Values[QueryAliasProp];
DatabaseName := 'MailOut';
LoginPrompt := False;
if Props.Values[QueryUserProp] <> '' then
Params.Add ('username=' + Props.Values[QueryUserProp]):
if Props.Values[QueryPasswordProp] <> '' then
Params.Add ('password=' + Props.Values|[QueryPasswordProp]):;
Connected := True;
end;
FQuery := TQuery.Create(nil);
with FQuery do
begin
DatabaseName := FDatabase.DatabaseName;
SQL.Text := QuerySQL;
AfterScroll := QueryAfterScroll;
Active := True;
end;
end;

{ Set up the list of fields and values }
procedure TMailTemplateQuery.QueryAfterScroll (DataSet: TDataSet);
var

Index: Integer;

begin
with FQuery do
for Index := 0 to FieldCount -1 do
if Fields[Index].DisplayText = '' then
{ If string value is empty then entry doesn't appear
in the 1list, so replace it }
FFields.Values|[Fields[Index].FieldName] := Empty
else
FFields.Values[Fields[Index] .FieldName] :=
Fields[Index] .DisplayText;
end;

Thereafter, the program interacts with the resulting data through the following
attributes: the NextRecord method to step through each record in turn, the
EOF property to determine when it has reached the end, and the Fields
property to access the values from the current record. The field values are held
in an associative format in a string list for use by the message substitution
routine, as accessed through the values property of the string list.

To place the field values into the list, you attach an event handler to the
AftersScroll event of the query (see the code in Listing B-6). This handler is
called whenever the current record changes, which is ideal for your purposes.
You can cycle through each field returned by the query and place its name and
value into the list. As mentioned earlier, special processing is required for
fields with empty string values.

It in the Post

Once you have constructed the mail message and merged in the fields from the
database, you are ready to send it off. Again, make use of open standards by
using an SMTP server to post the mail.

Wrap a TNMSMTP component in another object to provide a simple
interface for the rest of the program (a Fagade design pattern). One advantage
of this approach is that you could come back later and replace the underlying

52 Appendices

mail implementation without affecting the rest of the program. All you must
do is retain the existing interface.

NOTE

As mentioned before, feel free to replace the TnMsMTP component with your
favorite e-mail component. In Delphi 3, you can use the TsMTP component
since the TNMSMTP one is not available.

The mailing object, TMailTemplateSender (from the MailTemplate-
Sender unit), is passed the list of configuration properties upon its creation
(see Listing B-7). From this list it extracts the ones it requires (the name and
port of the SMTP host, and the user account to use) and initializes the SMTP
component with them.

Listing B-7: Interfacing with the SMTP component.

{ Initialization }
constructor TMailTemplateSender.Create(Props: TStrings):

begin
inherited Create;
FSender := TNMSMTP.Create(nil);
with FSender do
begin
Host := Props.Values[MailHostProp];
try
Port := StrTolnt (Props.Values[MailPortProp]);
except { Ignore }
end;
UserId := Props.Values[MailUserProp]:;
Connect;
end;
end;

{ Send an e-mail }
procedure TMailTemplateSender.Send (
FromEmail, ToEmail, Subject, Message: string);

begin
with FSender.PostMessage do
begin
FromAddress := FromEmail;
ToAddress.Text := ToEmail;
Subject = Subject;
Body.Text := Message;
end;
FSender.SendMail;
end;

Thereafter, the only interaction with the mailer is to request that a completed
message be sent. The Send method (also in Listing B-7) takes the sender’s
name and the recipient’s e-mail addresses, along with the subject and body of
the message as parameters. These are parceled up and sent out.

Logging and Testing

To keep an eye on what is happening within your application, generate a log
file for each run. This log contains the parameters passed to the program and
the recipients of the completed messages.

For testing purposes, the log file also captures the entire text of the
message, as it would have been sent. This approach allows you to verify that

Appendix B: Mass Electronic Mail-Outs 53

the merge process is working as expected before sending out your message. A
flag in the configuration file determines whether or not you are in test mode.
To continue your goal of modularizing the program, you put the logging
functionality into its own object in a separate unit, MailTemplateLog. The
TMailTemplateLog object (see Listing B-8) automatically creates a
timestamped log file based on the name of the application when it is itself
created. Including the current time within the filename ensures that previous
logs are not overwritten (although you must remember to purge the old log
files at some stage). The log file is automatically closed when the wrapper
object is destroyed. This class is another example of the Fagade design
pattern, hiding several more complex functions behind a simplified interface.

Listing B-8: Logging your actions.

{ Open the log file }
constructor TMailTemplateLog.Create;

var
Filename: string;
begin
inherited Create;
Filename := ChangeFileExt (ExtractFileName (ParamStr(0)),

FormatDateTime (LogFormat, Now) + LogExt);
AssignFile(FLogFile, Filename):;
Rewrite (FLogFile);
end;

{ Close the log file }
destructor TMailTemplatelog.Destroy;
begin
CloseFile(FLogFile);
inherited Destroy;
end;

{ Write an error message }
procedure TMailTemplatelog.Error (Error: Exception);
begin
Log(Error.Message);
end;

{ Write a log message }
procedure TMailTemplatelLog.Log(Message: string);
begin
Writeln(FLogFile, TimeStamp + Message);
Flush(FLogFile) ;
end;

{ Write a testing message }

procedure TMailTemplateLog.LogTest (
FromEmail, ToEmail, Subject, Message: string);

begin
Writeln(FLogFile, TestOnly):
Writeln(FLogFile, LogFrom + FromEmail);
Writeln(FLogFile, LogTo + ToEmail);
Writeln(FLogFile, LogSubject + Subject);
Writeln(FLogFile, LogMessage + Message);
{ Ensure it gets written out }
Flush(FLogFile);

end;

{ Return the current time }
function TMailTemplateLog.TimeStamp: string;
begin

Result := FormatDateTime (TimeFormat, Now);
end;

54 Appendices

You then have three methods for interacting with the log file: Log, LogTest,
and Error. Log adds a simple timestamped message to the file. LogTest is a
convenience method that records all the details for a message sent while in test
Finally, Error records any exceptions that are passed to it. All these
methods flush the file buffer before they complete, ensuring that you are able

mode.

to see all the relevant log messages.

All Together Now

Now that you have a set of objects, each performing its own specialized task
with minimal interactions between them, you can pull them all together into a

coherent whole.

The application has no user interface, so all of the main code appears in
the .dpr unit (see Listing B-9), and is marked as being a console application

with the { SAPPTYPE CONSOLE} directive.

Listing B-9: The completed mail-out processing.

var

FromEmail, ToEmail, Subject, Message: string;
QuerySQL, EmailField: string;

Count: Integer;

LogFile: TMailTemplatelog;

Template: TMailTemplateMessage;

Query: TMailTemplateQuery;

Sender: TMailTemplateSender;

Begin
Props := TStringlist.Create;
LogFile := nil;
Template := nil;
Query := nil;
Sender := nil;
Count := 0;
try
try

{ Load the program properties }
LoadMailProperties (Props)
{ Create and open the log file }

LogFile := TMailTemplatelog.Create;
{ Open the XML template document }
Template =

TMailTemplateMessage.Create(Props.Values|[TemplateProp]):
{ Extract various parameters }

FromEmail := Props.Values([MailFromProp];

QuerySQL = Template.NodeValue (QueryTag);

Subject := Template.NodeValue (SubjectTaqg)

EmailField := Template.AttributeValue (QueryTag, EmailAttr);
{ Query the database }

Query := TMailTemplateQuery.Create(Props, QuerySQL);

{ Create an interface to the e-mail system }
if not Testing then

Sender := TMailTemplateSender.Create(Props):
{ Log parameters }
LogFile.Log(Started):
LogFile.Log(LogFrom + FromEmail);
LogFile.Log(LogTemplate + Props.Values|[TemplateProp]);
LogFile.Log(LogSubject + Subject);
LogFile.Log(LogDatabase + Props.Values|[QueryAliasProp]):
LogFile.Log(LogQuery + QuerySQL);
{ Process each record from the query }
while not Query.EOF do
begin

Appendix B: Mass Electronic Mail-Outs 55

{ Get the recipient }
ToEmail := Query.Fields.Values[EmailField];
{ Perform the mail merge -
XML document with query fields }
Message := Template.ParseMessage (Query.Fields);
{ And output the results }
if Testing then
logFile.LogTest (FromEmail, ToEmail, Subject, Message)
else
begin
Sender.Send (FromEmail, ToEmail, Subject, Message);
LogFile.Log(Format (EmailSent, [ToEmail])):
{ Pause so as not to overwhelm the e-mail server }
Sleep(PauseTime) ;
end;
Inc (Count);
Query.NextRecord;
end;
except on Error: Exception do
{ Catch any errors and report them }
LogFile.Error(Error);
end;
finally
LogFile.Log(Format (Finished, [Count])):
{ Tidy up }
Props.Free;
LogFile.Free;
Template.Free;
Query.Free;
Sender.Free;
end;
end.

The steps in generating and sending the e-mail messages are as follows:

1. Check for any command-line parameters in LoadMailProperties, as
these can be used to pass in the name of a configuration file to read
instead of the default one. If no file is specified, the program looks for one
with the same name as itself but with an .xml extension. From the
selected file, the program properties are retrieved into a string list using
the LoadPropertiesFromXML routine from the XMLConfig unit. This
list is passed to the other objects for them to extract their necessary
values.

2. Create a TMailTemplateLog object to record your current session and
write initial settings to it.

Load the XML template file. Its name is retrieved from the configuration
parameters and is passed to a TMailTemplateMessage object.

W

4. Extract the query to be executed from the template file and pass it, along
with the configuration parameters, to a TMailTemplateQuery object.

5. Iterate through all the records returned from the query, performing the
mail merge as you go.

6. Send each completed message to a TMailTemplateSender object to
mail out, or write it to the log file if only testing. A pause is taken after
cach message is sent. This wait reduces the load on the mail server, and its
length is configurable through the properties file.

56 Appendices

7. Finalize the log file entries and free up all the objects. Your mail-out is
complete. To run the example project, you need to set up the mailtemp
database alias with the BDE to point to the supplied customer table.

NOTE

The code for this application appears within the .dpr file but not within a
procedure or class method. All Pascal programs have their main code in the
body of the main unit, between a begin and the final end. In a more typical
Delphi program for Windows, you find that the .dpr contains code to initialize
the application, create the opening forms, and then set it all going. You are
free to add or alter the code that appears there, although most often the
standard code is sufficient.

You can use the application as it stands for generating mass mailings from
your database of contacts (but only with their permission of course). Just alter
the configuration file for your database and server situation, then create the
mail template with its embedded query, and away you go. Enhancements to
the program could include an attachment clement in the template XML
document that causes the named file(s) to be sent out with each message. The
rest is up to you.

Summary

Using open standards helps to protect your coding investment from future
technology changes. This program works with any SQL database and with any
SMTP server. Similarly, partitioning the application into several
modules/objects, each of which has a well-defined and simple interface,
allows you to more easily modify parts of the program with minimal effects on
the remainder.

The application described here performs customized electronic mass mail-
outs. It retrieves configuration information from an XML document, selects
records from a database using SQL, merges fields from these records into a
message format held in another XML document, and sends the completed
message out into the world using a SMTP server.

Due to the use of XML for the configuration file and message template,
these details can be ecasily altered without an in-depth knowledge of the
program mechanics, and without requiring a recompilation.

Appe__ﬁgix C

|

A'Customized Client

I 3 |
dn I | l

k e

Since all XML documents follow the rules described in Chapter 2 and have a
simple tree structure, it is easy to process them in a generic manner.
Applications can display the tree, create new documents based on the DTD, or
search through the data for specific values in particular fields. However,
generic applications are not always the most user-friendly. You are forced to
use the tree structure that XML defines, whereas related data may be better
presented in some other format. Hence there is often a need for a customized
client program, designed specifically to handle a particular document type
(those based on one DTD). XML still provides an application-independent
transfer mode, allowing the client to ecasily interoperate with a database
serving up the data, or with another application that also knows about this
XML type.

To illustrate how to load and process an XML document on the client side,
you can use the movie-watcher format described previously. With Delphi you
can produce a program that reads the document, transforms it into domain-
specific objects, and then presents a Ul to browse through them. Recall that
the elements in this document are related to each other through 1D and IDREF
type attributes, which form the basis of the navigation you provide within the
application.

The Client

Your client application extracts all the relevant details from the XML
document and places them into three lists: movies, cinemas, and screenings.
The main form then displays the details to the user and lets them browse the
information. A tab control provides the main access to each of the three lists.
As an item is selected from a list, its details are displayed on the right side of
the form (see Figures C-1 through C-3).

Secondary navigation is provided by double-clicking on linking fields,
such as on the list of cinemas on the movie page, or on the movie name on the
screening page. In this way you can easily find a movie, select a session, and
find out where the cinema is.

The XML document to load is specified as a command-line parameter to
the application (this is necessary for later on). To access the file’s name, use
the ParamStr function:

57

58 Appendices

LoadDocument (ParamStr (1), EMovies, FCinemas, FScreenings);

Figure C-1: Select a current movie.

Movie-Watchers
Movies I Cinemas I Screenings i

.-’-'-: Beautiful kind _
Jimry Meutron: Boy Genius Title !Star Wiars - Attack of the Clones

bementa
kinority Report Hating!F‘G Lengthl2:23

iStar W ars - Attack of the Clones

e Fellu:uship of the Ring

Dhirectaor !Geu:urge Lucas

Starring | Ewan McGregor
Matalie Portman
Hapden Christensen
Christopher Lee

dizcover there iz more than meets the epe behind an

aszaszination attermpt on M aboo Senator Padmé

Amidala's life. Meanwhile, a Sith Lord archestrates _I
-

Sunopziz [Jedi Knightz Obi-wfan Kenobi and anakin Skowalker ﬂ

Showing at Bl k=)
Qzcar's Cinema

Figure C-2: Find a time when it is showing.

Movie-Watchers

aniesl Cinemas Sereenings |
& Beautiful Mind at Cheap Flicks

Jimmy Neutron: Boy Geniuz at Moviel Mewie |Star 'wars - Attack of the Clones
Jimrny Meutron: Boy Geniug at Qzcar'
kementa at Cheap Flicks Cinema !MDViEM ania
Minority Beport &t Cheap Flicks
Star Wars - Attack of the Clones at b Dates !':'3"" 23/2002 - 02/23/2002
Star W ars - Attack of the Clores at 0
The Fellowship of the Ring at Movieh Digital Snd. ITHX I Mo passes
The Fellmwzhip of the Ring at Oscar's Sessions | 10:00am Matines
12:30pm Matinee
: b atinee

Standard
Standard

Appendix C: A Customized Client 59

Figure C-3: See what the cinema has to offer.

Movie-Watchers

Movies Cinemas l Ecreeningsi

|Ehea§ Flicks
Mame !MDViEM ania

Ozcar's Cinema
Phone [555-123-4567
Addresz !1 234 Main 5t, Pleazantville

Directionz |From the town hall go west about a half mile _:__l

[+ Dizabled access v Candy bar
Pricing | stgPricing| Period Adult |Child | Discou
Standard |After Bpm
batinee | Before GBpm 400 | 300 @ 300

i ateratel | he Fellowship of the Ring
Star Wwars - Attack of the Clones
Jimryp Meutron: Boy Genius

You make use of the string list’s ability to associate an object with each string
throughout the program. Each list returned from the load procedure contains
the object’s display name as the string value, and adds a reference to an
appropriate object in the corresponding Objects property. As the user selects
different lists, copy their contents into the list box on the form (which sorts
them automatically) along with the object references. Then, when more details
are requested, you have immediate access to the necessary object and its
attributes.

TIP

String lists are very useful in Delphi programming. They do much more than
just manage a list of strings. Setting the sorted property to True automatically
orders the contents. Use the puplicates property to control the handling of
duplicate values in sorted lists. The values property allows you to map from
one string value to another, especially useful when dealing with . ini file style
values. And finally, the ocbjects property lets you associate any object with a
particular string value.

Information Hiding

To insulate the user interface from the source XML document, introduce a
separate unit, MiObj s, which defines the classes corresponding to the objects
extracted from the XML. Here you flatten out the XML tree structure,
providing properties for sub-eclements and attributes, and direct pointers to
other objects rather than indirect ones through 1D references. Compare the
movie object in Listing C-1 with the XML structure shown in Listing 2-1.

60 Appendices

Listing C-1: A movie object.

{ Details about a movie }
TMovie = eclass(TObject)
private
FId: string;
FName: string;
FRating: TMovieRating;
FLength: TDateTime;
FDirector: string;
FStars: TStringlList;
FSynopsis: string;
function GetRatingText: string;
procedure SetRatingText (RatingText: string);
public
constructor Create(Id: string);
destructor Destroy; override;
property Id: string read FId write FId;
property Name: string read FName write EName;
property Rating: TMovieRating read FRating write FRating;
property RatingText: string read GetRatingText
write SetRatingText;
property Length: TDateTime read FLength write FLength;
property Director: string read FDirector write FDirector;
property Stars: TStringList read FStars write FStars;
property Synopsis: string read FSynopsis write FSynopsis;
end;

Although you could navigate through the XML tree itself and extract all the
necessary details yourself, this approach makes it much easier for the
application to deal with the information. You do not have to know about the
structure of XML documents and what internal objects are used to represent
them. Instead, you have real-world objects with familiar patterns of properties.
Furthermore, having this extra layer means that you could, at some time in the
future, load the data from another source or in some other way without having
to change the user interface.

NOTE

This hiding of implementation details is one of the mainstays of object-oriented
programming, known as encapsulation. By reducing the knowledge of one
object or module required by another, you reduce their reliance on one
another. This decoupling of the objects makes it easier to make changes in
one place without adversely affecting another area. Using interfaces is another
important way to enforce decoupling.

The LoadDocument procedure declared in this unit handles all the translation
for you. Just pass it the name of the XML document and three lists to use in
returning the data.

To create these movie-watcher objects, parse the source XML document
to generate them. Using a SAX-compliant parser makes this an easy and
maintainable task.

Parsing the XML Documents

As is usually the case in using SAX for XML processing, you need to write a
content handler that knows about the expected document format, which means
implementing the IContentHandler interface. Passing an instance of the
handler to the SAX-compliant parser and supplying a document identifier

Appendix C: A Customized Client 61

causes the parser to invoke the events in the handler as it reads the various
parts of the document.

The simplest way to define a class that implements the document handler
interface is to make use of the default handler supplied by SAX. The
TDefaultHandler class (in the SAXHelpers unit) implements all of the
standard SAX handler interfaces, supplying default behaviors for each method
that generally do nothing. All these routines are declared as virtual, allowing
you to easily replace them in a subclass through overriding.

This is exactly what you do with the movie-watcher content handler, as
shown in Listing C-2. To generate the movie-watcher objects, only a few of
the SAX events need to be dealt with. Here you see the benefit of using the
default handler as a base. All the other SAX routines, which must be
implemented to satisfy the requirements of the interface, are already defined,
and do not interfere with your specific processing of the document.

Listing C-2: Declaring a movie-watcher document handler.

{ A SAX content handler that knows about movie-watcher documents }
TMWContentHandler = class(TDefaultHandler)
private
FCinema: TCinema;
FCinemas: TList;
FMovie: TMovie;
FMovies: TList;
FPrice: TPrice;
FScreening: TScreening;
FScreenings: TList;
FText: string;
public
constructor Create;
destructor Destroy; override;
property Cinemas: TList read FCinemas;
property Movies: TList read FMovies;
property Screenings: TList read FScreenings;
{ IContentHandler }
procedure Characters(const ch: SAXString); override;
procedure EndElement (const uri, localName, gName: SAXString):;
override;
procedure StartElement (const uri, localName, gName: SAXString;
const atts: IAttributes); override;
end;

As can be seen in the LoadDocument routine (see Listing C-3), an instance of
the customized content handler is created, along with an instance of a SAX-
compliant parser (in this case the default one). The TMWContentHandler
class constructs three lists, corresponding to the string lists used in the client
program, and fills them with the domain-specific objects it extracts from the
document.

Listing C-3: Loading the movie-watcher document.

{ Load XML document and process into string 1lists

with references to the appropriate objects }
procedure LoadDocument (URI: string;

MoviesList, CinemasList, ScreeningsList: TStringlist);
var

Index: Integer;

XMLReader: IXMLReader;

Handler: TMWContentHandler;
begin

{ Create the XML parser }

Handler := TMWContentHandler.Create;

62 Appendices

try
XMLReader := GetSAXVendor.XMLReader;
XMLReader.ContentHandler := Handler;

{ And parse the document }
XMLReader.parse (URI) ;
with Handler do

begin
{ Are they all here? }
if (Movies.Count = 0) or (Cinemas.Count = 0) or

(Screenings.Count = 0) then
raise Exception.Create(InvalidDocument + URI);
{ Step through the handler's 1lists and convert to output format }

for Index := 0 to Movies.Count - 1 do
MoviesList.AddObject (TMovie (Movies[Index]) .Name, Movies[Index]):
for Index := 0 to Cinemas.Count - 1 do
CinemasList.AddObject (
TCinema (Cinemas|[Index]) .Name, Cinemas[Index]);
for Index := 0 to Screenings.Count - 1 do
ScreeningsList.AddObject (Format (ScreeningDesc,
[TScreening(Screenings[Index]) .Movie.Name,
TScreening(Screenings|[Index]).Cinema.Name]),
Screenings[Index]);
end;
finally

if Handler.RefCount = 0 then
Handler.Free;
end;

end;

Once the parse process has completed, these lists are transferred to the ones
supplied by the calling program. For each of the internal lists, you step
through all the items and set the identifying string to an appropriate value.
Movies and cinemas have their names entered, while screenings combine the
names of their associated movie and cinema.

Constructing Model Objects

The first step in building the movie-watcher object model is performed by the
document handler’s constructor. Since the class is intended for a single use,
the constructor creates the necessary lists.

Then, as each element is encountered and the handler is notified through
the startElement method, you prepare the model environment for later
processing in the other event routines. For elements that correspond to objects
within the internal model, create a new instance of them and add it to their
appropriate list (see Listing C-4). References to the most recently constructed
objects are held within the object for them to be accessed later.

Listing C-4: Preparing a new real-world object.

{ Create objects as necessary for document elements }
procedure TMWContentHandler.StartElement (
const uri, localName, gName: SAXString; const atts: IAttributes);

{ Locate the movie with the given identifier }
function FindMovie(Id: string): TMovie;
var
Index: Integer;
begin
Result := nil;
for Index := 0 to FMovies.Count - 1 do
if TMovie (FMovies[Index]).Id = Id then
begin

Appendix C: A Customized Client 63

Result := TMovie (FMovies[Index]);
Exit;
end;
end;

{ Locate the cinema with the given identifier }
function FindCinema (Id: string): TCinema;

var
Index: Integer;
begin
Result := nil;
for Index := 0 to FCinemas.Count - 1 do
if TCinema (FCinemas[Index]).Id = Id then
begin
Result := TCinema (FCinemas|[Index]);
Exit;
end;
end;

{ Locate the pricing scheme with the given identifier }
function FindPrice(PriceId: string): TPrice;

var
Index, Index2: Integer;
begin
Result := nil;
for Index := 0 to FCinemas.Count - 1 do
with TCinema (FCinemas[Index]) do
begin
Index2 := Pricing.IndexOf (PriceId);
if Index2 > -1 then
begin
Result := TPrice(Pricing.Objects[Index2]);
Exit;
end;
end;
end;
begin
if gName = MWMovie then
begin
FMovie := TMovie.Create(atts.getValue (MWId))
FMovie.RatingText := atts.getValue (MWRating);
FMovies.Add (FMovie) ;
end
else if gName = MWCinema then
begin
FCinema := TCinema.Create(atts.getValue (MWId));
FCinemas.Add (FCinema) ;
end
else if gName = MWPrices then
begin
FPrice := TPrice.Create(atts.getValue (MWId));

FCinema.Pricing.AddObject (atts.getValue (MWId), FPrice);
end
else if gName = MWScreening then
begin
FScreening := TScreening.Create(FindMovie(atts.getValue (MWMovield)),
FindCinema (atts.getValue (MWCinemald))):;
FScreenings.Add (FScreening);

end
else if gName = MWSession then
FPrice := FindPrice(atts.getValue (MWPricelId));
end;

Movie objects are created with their ID and rating, as extracted from the
attributes of the element, before being added to the list of movies. Similarly,
cinema instances are constructed and added to the cinemas list. Pricing details

64 Appendices

belong to a particular cinema, so price elements cause a new price object to be
added to the current cinema’s (FCinema) own list.

Screenings contain references to the movie and cinema linked together
through IDREF attributes. These objects are located from their respective lists
before being passed to the screening object’s constructor. As before, the
resulting object is added to its list. Individual sessions within a screening refer
to their pricing structure via an attribute. The associated price object is located
and saved for later.

Accumulating Content

Other clements appear as properties of the model objects, rather than as
objects in their own right. Their content appears as text that is returned to the
handler through the Characters event. However, this method is only
invoked as the content is parsed, following the StartElement. Hence, these
elements are dealt with in the EndElement event, once their content has been
identified.

Within the text content event (shown in Listing C-5), you add the new text
to any existing value and save it for later. It is possible for an element’s
content to be made up of several text nodes, perhaps coming from different
embedded clements (such as the emph ¢lement in the synopsis), or through
the use of entity references or CDATA sections.

Listing C-5: Accumulating text.

{ Accumulate text content }
procedure TMWContentHandler.Characters(const ch: SAXString):;
begin
FText := FText + ch;
end;

TIP

Some XML parsers automatically normalize text as they read it. In others, this
behavior can be controlled through a property. The parser used here is fairly
basic and simply returns all the text it finds, requiring the handler to do the
operation itself.

Saving Properties

As described earlier, elements from the XML document that are present in the
movie-watcher model as properties have their content built up within the
Characters event. Once the end tag for those elements is encountered, you
can transfer that accumulated text into the corresponding model object.

The EndElement routine (see Listing C-6) uses the element name to
determine which object and property to set from the text. In the case of the
name element, the element name is insufficient identification since it appears
in the movie, cinema, and prices elements. For this reason, you need to check
which object is currently being constructed (the non-nil one).

Appendix C: A Customized Client

Listing C-6: Saving object model property values.

{ Save text content to appropriate property }
procedure TMWContentHandler.EndElement (
const uri, localName, gName: SAXString):

{ Replace consecutive white space with one space }
function Normalize(const Text: string): string;
const

Blanks = [#1..#32];
var
Index: Integer;
begin
Result := Text;
if Length(Text) < 2 then
Exit;
for Index := Length(Result) downto 2 do

if (Result[Index] in Blanks) and
(Result[Index - 1] in Blanks) then

begin
Result[Index - 1] := ' ';
Delete(Result, Index, 1);
end;
end;

{ Return the accumulated text and clear for next time }
function ReadAndClearText: string;
begin
Result := Trim(Normalize (FText));
FText := "'';
end;

begin
if gName = MWMovie then
FMovie := nil
else if gName = MWMovie then
FCinema := nil
else if gName = MWPrices then
FPrice := nil
else if gName = MWScreening then
FScreening := nil
else if gName = MWName then
begin
if Assigned(FMovie) then
FMovie.Name := ReadAndClearText
else if Assigned(FPrice) then
FPrice.Name := ReadAndClearText
else if Assigned(FCinema) then
FCinema.Name := ReadAndClearText;
end
else if gName = MWLength then
FMovie.Length := StrTolInt(ReadAndClearText) / 24 / 60
else if gName = MWDirector then
FMovie.Director := ReadAndClearText
else if gName = MWStar then
FMovie.Stars.Add (ReadAndClearText)
else if gName = MWSynopsis then
FMovie.Synopsis := ReadAndClearText
else if gName = MWPhone then
FCinema.Phone := ReadAndClearText
else if gName = MWAddress then
FCinema.Address := ReadAndClearText
else if gName = MWDirections then
FCinema.Directions := ReadAndClearText
else if gName = MWCandyBar then
FCinema.CandyBar := True
else if gName = MWDisabledAccess then
FCinema.DisabledAccess := True
else if gName = MWPeriod then

66 Appendices

FPrice.Period := ReadAndClearText
else if gName = MWAdult then
FPrice.Adult := StrToFloat (ReadAndClearText)
else if gName = MWChild then
FPrice.Child := StrToFloat (ReadAndClearText)
else if gName = MWDiscount then
FPrice.Discount := StrToFloat (ReadAndClearText)
else if gName = MWStartDate then
FScreening.StartDate := StrToDateTime (ReadAndClearText)
else if gName = MWEndDate then
FScreening.EndDate := StrToDateTime (ReadAndClearText)
else if gName = MIWNoPasses then
FScreening.NoPasses := True
else if gName = MWDigitalSound then
FScreening.DigitalSound := ReadAndClearText
else if gName = MWSession then
FScreening.Showing.AddObject (ReadAndClearText, FPrice);
end;

The supplied text must be normalized before being used. This processing
replaces consecutive occurrences of white space characters with a single space
and trims white space from the start and end of the text. The
ReadAndClearText function performs this activity, as well as clearing out
the FText field so it is ready for accumulating text for the next node.

Properties that are not text values are converted as necessary, such as the
ticket prices and the screening dates. Some elements provide information
simply through their presence, like the disabled access and candy bar settings
for a cinema. Here you set the corresponding Boolean property to True when
they are encountered.

The objects that are being operated on were created in the appropriate
StartElement method, and the saved references are used here.

NOTE

Elements that do not contribute to the object model structure, and do not have
any text content can be ignored in the event handlers. Examples from the
current documents include the starring element from the movies, and the
facilities element from the cinemas. Although they are not used here, they
are necessary when generating an HTML representation since they serve to
group their sub-elements.

Client Processing

The returned lists are used within the client application for display and
navigation purposes. Since they are string lists they can be assigned directly to
the Ttems property of the list box on the left of the form. Setting the Sorted
property of that list box automatically reorders the entries for display,
retaining the association with the attached objects. The tab-
NavigationChange method of the form (see Listing C-7) is invoked when
the user selects one of the tabs on the screen (and during the initial load). It
performs the necessary assignment.

As items in the list are selected, it is easy to retrieve all the information to
be displayed through the corresponding Objects entry. This technique is
shown in the 1bxNavigationClick routine (see Listing C-7).

Appendix C: A Customized Client

Listing C-7: Display movie items.

{ Show selected details in listbox }
procedure TfrmMovieWatchers.tabNavigationChange (Sender:
begin
with lbxNavigation do
begin
Items.BeginUpdate;
Items.Clear;
if tabNavigation.TabIndex = MoviesTab then

Items := FMovies
else if tabNavigation.TabIndex = CinemasTab then
Items := FCinemas
else if tabNavigation.TabIndex = ScreeningsTab then
Items := EFScreenings;
Items.EndUpdate;
end;
lbxNavigation.ItemIndex := O;
lbxNavigationClick (lbxNavigation);
ActiveControl := lbxNavigation;

end;

{ Select an item to display its details }

TObject) ;

procedure TfrmMovieWatchers.lbxNavigationClick(Sender: TObject):;

begin
with lbxNavigation do
begin
if TtemIndex < O then
ItemIndex := O;
if tabNavigation.TabIndex = MoviesTab then
ShowMovie (TMovie (Items.Objects[ItemIndex]))
else if tabNavigation.TabIndex = CinemasTab then
ShowCinema (TCinema (Items.Objects[ItemIndex]))
else if tabNavigation.TabIndex = ScreeningsTab then

ShowScreening (TScreening(Items.Objects[ItemIndex]));

end;
end;

{ Display details for a movie }
procedure TfrmMovieWatchers.ShowMovie (Movie: TMovie);
var

Index: Integer;

begin

with Movie do

begin
edtTitle.Text := Name;
edtRating.Text := MovieRatingText[Rating];
edtLength.Text := FormatDateTime (TimeFormat,
edtDirector.Text := Director;
lbxStars.Items := Stars;
memSynopsis.Lines.Text := Synopsis;

{ Show which cinemas it is playing at }
with lbxCinemas.Items do

begin
BeginUpdate;
Clear;
for Index := 0 to FScreenings.Count -1 do
if TScreening(FScreenings.Objects[Index]).Movie
then
AddObject (TScreening(

FScreenings.Objects[Index]).Cinema.Name,
FScreenings.Objects[Index]);
if Count > 0 then

lbxCinemas.ItemIndex := 0O;
EndUpdate;
end;
end;
pgcDetails.ActivePage := tshMovie;

end;

Length);

Movie

67

68 Appendices

From that object, you extract the details appropriate to its type and set them
into the controls on the screen. The ShowMovie routine is shown in Listing
C-7 as an example of the required processing. Using the power of string lists,
combined with the domain-specific objects, makes displaying the details of the
movies and their screenings fairly simple.

Other navigation comes from responding to user interactions with the
client program. For example, double-clicking an entry in the list of cinemas
showing a particular movie invokes the event handler shown in Listing C-8,
which moves to the Screening page and locates the corresponding
combination. For keyboard users, another event handler reacts to pressing the
Enter key while on an entry in this list (reusing the functionality of the double-
click routine).

Listing C-8: Additional navigation.

{ Go to the screening details for a movie }
procedure TfrmMovieWatchers.lbxCinemasDblClick(Sender: TObject):;
begin
ShowList (ScreeningsTab, Format (ScreeningDesc,
[edtTitle.Text, lbxCinemas.Items|[lbxCinemas.ItemIndex]]));
end;

{ Enter acts like a double-click }
procedure TfrmMovieWatchers.lbxCinemasKeyDown (Sender: TObject;
var Key: Word; Shift: TShiftState);
begin
if Key = VK RETURN then
lbxCinemasDblClick (lbxCinemas) ;
end;

To run the program, you must supply the name of the target XML document

as a command line parameter. Running from within Delphi you specify this
value through the Run | Parameters menu option.

Through the Browser

So far the application has been standalone. You supply it with the name of the
file to load as a command-line parameter and it opens and displays that file.
But one of the advantages of XML is its delivery across the Internet. To
enable a downloaded file to trigger your client automatically, all you do is
define a new file type for this class of documents.

To define this type in Windows you do the following:

1. Open Windows Explorer, select View | Options, and select the File Types
tab.

2. Examine the list of the registered file types and the associated programs
that deal with them. Note that each has a list of file extensions that
identify the type, the corresponding MIME type, and the name of the
program that knows how to deal with them.

W

Add a new file type for the movie-watcher XML documents by pressing
New Type.

4. Enter a description, “Movie-Watcher”, the content (MIME) type,
“application/x-movie-watcher”, and the extension, “.mwx”. The

Appendix C: A Customized Client 69

2

MIME type, “application/x—27272,
specific.

indicates that the file is application

5. Press New for a default action.

6. Enter its name, “open”, and press Browse to search for your application.
Follow the path and filename with the text “$1” to indicate that the name
of the file being opened is passed to the program (hence the need for the
processing of the command-line parameter earlier). Press OK to save the
action (see Figure C-4).

Figure C-4: The open action for movie-watcher documents.

Mew Action 7] I

Achion;
Iu:upen] :
C |
Application uged to perfarm action; ﬂl
I"B:'\EDDk'\Ehapter 248hwibpp exe 1" Browse... |
[Use DDE

7. Change the associated icon if you wish. Set the other check box options if
desired.

8. Save the results (see Figure C-5) by pressing the Close button.

Having defined the new type, you must rename the movie-watcher XML
document to have an .mwx extension. Now whenever this file type is opened
up within your browser, it loads directly into your application. A temporary
file is created to hold the downloaded text, with the name of that file being
passed to your client program as a command-line parameter.

TIP

You may need to set up your Web server to supply the correct MIME type for
these documents. This process is dependent on the server that you are using,
however, you need to associate the application/x-movie-watcher MIME
type with the .mwx extension.

70 Appendices

Figure C-5: A new file type for movie-watcher documents.

Add New File Type |

Diescription of bype: !MDViE-watcher

Bzzociated extenzion: I.mw:-:

Content bppe [MIME]: Iap|:|Iil:atil:nn.-’:-:-ml:uvie-watcher _v_i
Default extension for content ppe:; W _:i
Actions
open

MNew. .. it | & ermae | Setefaul |

¥ Confirm open after download

[flways show extension [T Browee in came window

Cloze I [Earne] I

Summary

Although generic processors can handle XML in many useful ways, one of the
advantages of using XML is that the information held within can also be sent
to specialized applications and easily accessed. This allows for more user-
friendly processing, as well as increased integrity and validations, without
losing the benefits of XML in data interchange and legibility.

The application described here shows how you can write a client
application in Delphi that receives and processes a particular class of XML
documents. By defining a new file type in the registry specific to this type of
XML document, you can have your Web browser automatically kick off the
program whenever such a file is downloaded. Delivering data was never so
easy.

Compare this SAX implementation of the custom viewer with the XML
data binding version discussed in Chapter 22.

Index

A

Attr interface

in CUESoft DOM, 20
attributes

in CUESoft DOM, 20

C

CDATA sections
in CUESoft DOM, 22
CDATASection interface
example, 39
in CUESoft DOM, 22
CharacterData interface
in CUESoft DOM, 20
Comment interface
example, 40
in CUESoft DOM, 22
comments
in CUESoft DOM, 22
configuration
using XML, 45
CUESoft DOM, 3
converting to XML, 10
loading, 37
normalization, 18
parsing, 33, 37
TDOMException exception, 5
TXmlAttribute class, 20
TXmlCDataSection class, 22
TXmlCharacterData class, 20
TXmlComment class, 22
TXmlDocument class, 27
TXmlDocumentFragment class, 26
TXmlIDocumentType class, 23

TXmlDomImplementation class, 30

TXmlElement class, 16
TXmlEntity class, 25
TXmlEntityReference class, 26
TXmINamedNodeMap class, 14
TXmlINode class, 6
TXmlINodeList class, 13
TXmlNotation class, 24
TXmlObjModel class, 30
TXmlParser class, 33
TXmlParserError exception, 6

TXmlProcessingInstruction class, 23

71

TXmlText class, 21
CUEXml. See CUESoft DOM

D

database

e-mail example, 50
Document interface

example, 40

in CUESoft DOM, 27
DocumentFragment interface

in CUESoft DOM, 26
documents

in CUESoft DOM, 27
DocumentType interface

example, 40

in CUESoft DOM, 23
DOM

example, 46

in CUESoft DOM, 3
DOMException exception

in CUESoft DOM, 5
DOMImplementation interface

in CUESoft DOM, 30
downloads

examples code, i1
DTD

in CUESoft DOM, 23

E

Element interface

example, 39

in CUESoft DOM, 16
elements

in CUESoft DOM, 16
e-mail

example, 44
entities

in CUESoft DOM, 25
Entity interface

example, 40

in CUESoft DOM, 25
entity references

in CUESoft DOM, 26
EntityReference interface

in CUESoft DOM, 26
examples code

download, 111

72 Index

F
Facade pattern, 51, 53

G

GetSAX Vendor function
example, 62

I

IContentHandler interface
example, 60

M

Microsoft DOM
example, 46

movie-watcher
customized client, 57

N

NamedNodeMap interface

in CUESoft DOM, 14
Node interface

example, 38

in CUESoft DOM, 6
NodeList interface

example, 40

in CUESoft DOM, 13
normalization

in CUESoft DOM, 18
Notation interface

example, 40

in CUESoft DOM, 24
notations

in CUESoft DOM, 24

P

parsing

in CUESoft DOM, 33, 37
processing instructions

in CUESoft DOM, 23
Processinglnstruction interface

example, 39

in CUESoft DOM, 23

S

SAX
example, 60
SAX for Pascal
example, 60
Simple Mail Transfer Protocol. See SMTP

SMTP, 44, 51
SQL, 44
Structured Query Language. See SQL

T

TDefaultHandler class
example, 61
TDOMException exception, 5
text
in CUESoft DOM, 21
Text interface
example, 39
in CUESoft DOM, 21
TNMSMTP class, 51
TXmlAttribute class, 20
TXmlCDataSection class, 22
example, 39
TXmlCharacterData class, 20
TXmlComment class, 22
example, 40
TXmlDocument class, 27
example, 40
TXmlDocumentFragment class, 26
TXmlIDocumentType class, 23
example, 40
TXmIDomImplementation class, 30
TXmlElement class, 16
example, 39
TXmlEntity class, 25
example, 40
TXmlEntityReference class, 26
TXmINamedNodeMap class, 14
TXmlINode class, 6
example, 38
TXmINodeList class, 13
example, 40
TXmlNotation class, 24
example, 40
TXmlObjModel class, 30
example, 37
TXmlParser class, 33
TXmlParserError exception, 6
TXmlProcessingInstruction class, 23
example, 39
TXmlText class, 21
example, 39

X

XML
configuration format, 45
example, 46, 47
xml:space, 32
XPath
in CUESoft DOM, 19

